Minimizing Intracochlear Pressure: Influence of the Insertion Sheath

2021 ◽  
pp. 1-6
Author(s):  
Ceyhun Ucta ◽  
Philipp Mittmann ◽  
Arneborg Ernst ◽  
Rainer Seidl ◽  
Gina Lauer

Objective: Atraumatic cochlear implantation (CI) and insertion of the electrode in particular are major goals of recent CI surgery. Perimodiolar electrode arrays need a stylet or exosheath for insertion. The sheath can influence the intracochlear pressure changes during insertion of the electrode. The aim of this study was to modify the insertion sheath to optimize intracochlear pressure changes. Methods: In an artifical cochlear model, 7 different modified insertion sheaths were used. The intracochlear pressure was measured with a micro-optical sensor in the apical part of the model cochlea. Results: Significant lower intracochlear pressure changes were observed when the apical part of the insertion sheath was either shortened or tapered. Modification of the stopper does influence the intracochlear pressure significantly. Conclusion: Modification of the insertion sheath leads to lower intracochlear pressure gain. The differences and impact on intracochlear pressure changes found in this study underline the importance of even subtle modifications of the electrode insertion technique.

2018 ◽  
Vol 23 (3) ◽  
pp. 181-186 ◽  
Author(s):  
William Crohan ◽  
Jay Krishnaswamy ◽  
Gunesh Rajan

Aim: To investigate and compare residual hearing preservation between patients based on the presence of intraoperative gusher. Methodology: We retrospectively compared 2 cohorts of cochlear implant recipients significantly distinguished by whether or not they experienced gusher intraoperatively. Patients underwent cochlear implantation using 24-mm lateral wall electrode arrays as well pharmacologic steroid protection. All patients were assessed by a hearing implant MDT. Hearing preservation rates and speech perception outcomes were assessed at 1, 6, 12, 24, 36, 48, and 60 months. Results: The patients with no gusher demonstrated complete hearing preservation. The patients with gusher demonstrated significant postoperative reduction of hearing thresholds, which declined at a significantly higher pace during follow-up. All patients demonstrated significantly better speech performance after cochlear implantation. Conclusion: The present study suggests that intraoperative gusher is associated with a significant drop in residual hearing, both immediately and over time, which may be related to the large change in intracochlear pressure intraoperatively.


2016 ◽  
Vol 21 (1) ◽  
pp. 30-37 ◽  
Author(s):  
Ingo Todt ◽  
Arneborg Ernst ◽  
Philipp Mittmann

To achieve a functional atraumatic insertion, low intracochlear pressure changes during the procedure are assumed to be important. The aim of this study was to observe intracochlear pressure changes due to different insertion techniques in a cochlear model. Cochlear implant electrode insertions were performed in an artificial cochlear model to record intracochlear pressure changes with a micropressure sensor to evaluate the maximum amplitude and frequency of pressure changes under different insertional conditions. We found statistically significant differences in the occurrence of intracochlear pressure peak changes comparing different techniques. Based on our model results, an insertion should be maximally supported to minimize micromovement-related pressure changes.


2016 ◽  
Vol 6 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Ingo Todt ◽  
Arneborg Ernst ◽  
Philipp Mittmann

Intracochlear pressure changes during the cochlear implant insertion are assumed to be an important contributor to hearing preservation. The aim was to observe intracochlear pressure changes by different round window opening sizes and different hydrophilic electrode conditions. The experiments were performed in a cochlear model with a micropressure sensor in the helicotrema area. Different artificial round window membrane and different moisturized electrode conditions were compared. A punctured round window causes a significantly higher and an indirect moisturized electrode condition a significantly lower intracochlear pressure change. The degree of round window opening and the hydrophilic character of an electrode during insertion affect the intracochlear pressure significantly in a model.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
I. Todt ◽  
P. Mittmann ◽  
A. Ernst

Introduction. To preserve residual hearing the atraumaticity of the cochlea electrode insertion has become a focus of cochlear implant research. In addition to other factors, the speed of insertion is thought to be a contributing factor in the concept of atraumatic implantation. The aim of our study was to observe intracochlear fluid pressure changes due to different insertional speeds of an implant electrode in a cochlear model.Materials and Methods. The experiments were performed using an artificial cochlear model. A linear actuator was mounted on an Advanced Bionics IJ insertional tool. The intracochlear fluid pressure was recorded through a pressure sensor which was placed in the helicotrema area. Defined insertions were randomly performed with speeds of 0.1 mm/sec, 0.25 mm/sec, 0.5 mm/sec, 1 mm/sec, and 2 mm/sec.Results. A direct correlation between speed and pressure was observed. Mean maximum values of intracochlear fluid pressure varied between 0.41 mm Hg and 1.27 mm Hg.Conclusion. We provide the first results of fluid pressure changes due to insertional speeds of CI electrodes in a cochlear model. A relationship between the insertional speed and intracochlear fluid pressure was observed. Further experiments are needed to apply these results to the in vivo situation.


2016 ◽  
Vol 137 (2) ◽  
pp. 113-118 ◽  
Author(s):  
Marlene Mittmann ◽  
Arneborg Ernst ◽  
Philipp Mittmann ◽  
Ingo Todt

2019 ◽  
Author(s):  
J Uçta ◽  
P Mittmann ◽  
G Lauer ◽  
R Seidl ◽  
J Wagner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document