pressure sensor
Recently Published Documents


TOTAL DOCUMENTS

5627
(FIVE YEARS 1496)

H-INDEX

79
(FIVE YEARS 20)

Nano Energy ◽  
2022 ◽  
Vol 93 ◽  
pp. 106797
Author(s):  
Jin-ho Son ◽  
Deokjae Heo ◽  
Yeonsu Song ◽  
Jihoon Chung ◽  
Banseok Kim ◽  
...  

2022 ◽  
Vol 176 ◽  
pp. 114366
Author(s):  
Xiao Han ◽  
Yiqi Zhang ◽  
Fangli Ran ◽  
Chenyu Li ◽  
Lin Dai ◽  
...  
Keyword(s):  

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 256
Author(s):  
Gen-Wen Hsieh ◽  
Liang-Cheng Shih ◽  
Pei-Yuan Chen

We propose a flexible capacitive pressure sensor that utilizes porous polydimethylsiloxane elastomer with zinc oxide nanowire as nanocomposite dielectric layer via a simple porogen-assisted process. With the incorporation of nanowires into the porous elastomer, our capacitive pressure sensor is not only highly responsive to subtle stimuli but vigorously so to gentle touch and verbal stimulation from 0 to 50 kPa. The fabricated zinc oxide nanowire–porous polydimethylsiloxane sensor exhibits superior sensitivity of 0.717 kPa−1, 0.360 kPa−1, and 0.200 kPa−1 at the pressure regimes of 0–50 Pa, 50–1000 Pa, and 1000–3000 Pa, respectively, presenting an approximate enhancement by 21−100 times when compared to that of a flat polydimethylsiloxane device. The nanocomposite dielectric layer also reveals an ultralow detection limit of 1.0 Pa, good stability, and durability after 4000 loading–unloading cycles, making it capable of perception of various human motions, such as finger bending, calligraphy writing, throat vibration, and airflow blowing. A proof-of-concept trial in hydrostatic water pressure sensing has been demonstrated with the proposed sensors, which can detect tiny changes in water pressure and may be helpful for underwater sensing research. This work brings out the efficacy of constructing wearable capacitive pressure sensors based on a porous dielectric hybrid with stress-sensitive nanostructures, providing wide prospective applications in wearable electronics, health monitoring, and smart artificial robotics/prosthetics.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Kamran Soltani ◽  
Ghader Rezazadeh ◽  
Manus Henry ◽  
Oleg Bushuev

Author(s):  
Jing Wang ◽  
Longwei Li ◽  
Lanshuang Zhang ◽  
Panpan Zhang ◽  
Xiong Pu

Abstract Highly sensitive soft sensors play key roles in flexible electronics, which therefore have attracted much attention in recent years. Herein, we report a flexible capacitive pressure sensor with high sensitivity by using engineered micro-patterned porous polydimethylsiloxane (PDMS) dielectric layer through an environmental-friendly fabrication procedure. The porous structure is formed by evaporation of emulsified water droplets during PDMS curing process, while the micro-patterned structure is obtained via molding on sandpaper. Impressively, this structure renders the capacitive sensor with a high sensitivity up to 143.5 MPa-1 at the pressure range of 0.068~150 kPa and excellent anti-fatigue performance over 20,000 cycles. Meanwhile, the sensor can distinguish different motions of the same person or different people doing the same action. Our work illustrates the promising application prospects of this flexible pressure sensor for the security field or human motion monitoring area.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 150
Author(s):  
Sen Peng ◽  
Jing Cheng ◽  
Xingqi Wu ◽  
Xu Fang ◽  
Qing Wu

Pressure sensor placement is critical to system safety and operation optimization of water supply networks (WSNs). The majority of existing studies focuses on sensitivity or burst identification ability of monitoring systems based on certain specific operating conditions of WSNs, while nodal connectivity or long-term hydraulic fluctuation is not fully considered and analyzed. A new method of pressure sensor placement is proposed in this paper based on Graph Neural Networks. The method mainly consists of two steps: monitoring partition establishment and sensor placement. (1) Structural Deep Clustering Network algorithm is used for clustering analysis with the integration of complicated topological and hydraulic characteristics, and a WSN is divided into several monitoring partitions. (2) Then, sensor placement is carried out based on burst identification analysis, a quantitative metric named “indicator tensor” is developed to calculate hydraulic characteristics in time series, and the node with the maximum average partition perception rate is selected as the sensor in each monitoring partition. The results showed that the proposed method achieved a better monitoring scheme with more balanced distribution of sensors and higher coverage rate for pipe burst detection. This paper offers a new robust framework, which can be easily applied in the decision-making process of monitoring system establishment.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 443
Author(s):  
Ildeberto Santos-Ruiz ◽  
Francisco-Ronay López-Estrada ◽  
Vicenç Puig ◽  
Guillermo Valencia-Palomo ◽  
Héctor-Ricardo Hernández

This paper presents a method for optimal pressure sensor placement in water distribution networks using information theory. The criterion for selecting the network nodes where to place the pressure sensors was that they provide the most useful information for locating leaks in the network. Considering that the node pressures measured by the sensors can be correlated (mutual information), a subset of sensor nodes in the network was chosen. The relevance of information was maximized, and information redundancy was minimized simultaneously. The selection of the nodes where to place the sensors was performed on datasets of pressure changes caused by multiple leak scenarios, which were synthetically generated by simulation using the EPANET software application. In order to select the optimal subset of nodes, the candidate nodes were ranked using a heuristic algorithm with quadratic computational cost, which made it time-efficient compared to other sensor placement algorithms. The sensor placement algorithm was implemented in MATLAB and tested on the Hanoi network. It was verified by exhaustive analysis that the selected nodes were the best combination to place the sensors and detect leaks.


Sign in / Sign up

Export Citation Format

Share Document