scholarly journals Generation of high dynamic range for enhancing the panorama environment

2021 ◽  
Vol 10 (1) ◽  
pp. 138-147
Author(s):  
Roa'a M. Al_airaji ◽  
Ibtisam A. Aljazaery ◽  
Suha Kamal Al_Dulaimi ◽  
Haider TH.Salim Alrikabi

This paper presents a methodology for enhancement of panorama images environment by calculating high dynamic range. Panorama is constructing by merge of several photographs that are capturing by traditional cameras at different exposure times. Traditional cameras usually have much lower dynamic range compared to the high dynamic range in the real panorama environment, where the images are captured with traditional cameras will have regions that are too bright or too dark. A more details will be visible in bright regions with a lower exposure time and more details will be visible in dark regions with a higher exposure time. Since the details in both bright and dark regions cannot preserve in the images that are creating using traditional cameras, the proposed system have to calculate one using the images that traditional camera can actually produce. The proposed systems start by get LDR panorama image from multiple LDR images using SIFT features technology and then convert this LDR panorama image to the HDR panorama image using inverted local patterns. The results in this paper explained that the HDR panorama images that resulting from the proposed method is more realistic image and appears as it is a real panorama environment.

2019 ◽  
Vol 22 (3) ◽  
pp. 293-307
Author(s):  
Vu Hong Son

Camera specifications have become smaller and smaller, accompanied with great strides in technology and thinner product demands, which have led to some challenges and problems. One of those problems is that the image quality is reduced at the same time. The decrement of radius lens is also a cause leading to the sensor not absorbing a sufficient amount of light, resulting in captured images which include more noise. Moreover, current image sensors cannot preserve whole dynamic range in the real world. This paper proposes a Histogram Based Exposure Time Selection (HBETS) method to automatically adjust the proper exposure time of each lens for different scenes. In order to guarantee at least two valid reference values for High Dynamic Range (HDR) image processing, we adopt the proposed weighting function that restrains random distributed noise caused by micro-lens and produces a high quality HDR image. In addition, an integrated tone mapping methodology, which keeps all details in bright and dark parts when compressing the HDR image to Low Dynamic Range (LDR) image for display on monitors, is also proposed. Eventually, we implement the entire system on Adlink MXC-6300 platform that can reach 10 fps to demonstrate the feasibility of the proposed technology.  


Author(s):  
Sergey V. Alexandrov ◽  
Johann Prankl ◽  
Michael Zillich ◽  
Markus Vincze

1986 ◽  
Vol 133 (1) ◽  
pp. 26
Author(s):  
J. Mellis ◽  
G.R. Adams ◽  
K.D. Ward

2009 ◽  
Vol 35 (2) ◽  
pp. 113-122 ◽  
Author(s):  
Ke-Hu YANG ◽  
Jing JI ◽  
Jian-Jun GUO ◽  
Wen-Sheng YU

Sign in / Sign up

Export Citation Format

Share Document