scholarly journals Using CaCO3-doped package to improve correlated color temperature uniformity of white light-emitting diodes

Author(s):  
My Hanh Nguyen Thi ◽  
Nguyen Thi Phuong Loan ◽  
Thuc Minh Bui ◽  
Hoang Van Ngoc

<span>The white light-emitting diode (WLED) has been the most advance lighting method currently, however, the fabrication process of this configuration still has drawbacks which negatively affect its color quality. This research was conducted to provide a method for WLED’s lighting output enhancement. Since CaCO<sub>3</sub> particles are excellent for thermal stability enhancement, especially when being combined with an adhesive substance, we decided to integrate CO<sub>3</sub> particles into resin matrix such as melamine formaldehyde (MF) and investigate their influences on the optical properties, including color uniformity and lumen output, of the WLED. The results showed that CaCO3 and MF resin are beneficial to the light scattering efficiency, which results in higher luminous flux and chromatic quality for WLED packages. In addition to that, the appropriate amounts of MF resin and CaCO<sub>3</sub> for reaching the best lumen efficiency and color quality are figured out at 1% and 10%, respectively. Moreover, another advantage of using MF resin and CaCO<sub>3</sub> for fabricating WLEDs is cost effectiveness. Hence, it has turned out that CaCO<sub>3</sub> and MF resins can be potential materials for next high-quality WLED generations.</span>

Author(s):  
Nguyen Thi Phuong Loan ◽  
Nguyen Doan Quoc Anh

As the luminescence industry develops, the white light light-emitting diode (LED) package with a single chip and a single phosphor although produces good luminous flux but has a poor color rendering index (CRI) can no longer fulfill the requirements of modern lighting applications. Therefore, this research is conducted to response to the urgent demands of improving other lighting qualities of WLED while maintaining high luminous efficiency. To achieve this target, we applied the new WLED package, which contains multi-chips and multi-phosphor layers, and have obtained outstanding results in both CRI and luminous efficacy. Two types of phosphor used in the WLED package are Y2O3:Ho3+ and ZnO:Bi3+. A color configuration model is also developed to adjust the shading of the white-light LED module. The results of this research show that the triple-layer phosphorhas the best performance when applied in a white-light LED package, which is demonstrated through better color quality, CRI and luminous efficacy, The manufacturers can rely on this research to produce the optimal-quality WLED, or WLED that is appropriate to their quality demands.


Author(s):  
Xingjian Yu ◽  
Weicheng Shu ◽  
Bofeng Shang ◽  
Bin Xie ◽  
Yanhua Cheng ◽  
...  

In this study, we proposed a bell shape phosphor layer geometry and the corresponding dual-step phosphor coating method for enhancing the angular color uniformity (ACU) of phosphor-converted white light-emitting diodes (pcLEDs). Numerical simulation based on Volume of Fluid (VOF) model was applied to predict phosphor geometries. Based on the simulated results, experiments were conducted to realize the phosphor geometries. The simulated results show that the VOF model can predict the phosphor geometries with an acceptable geometric deviation within 5%. The experimental results show that compared with the spherical cap phosphor layer geometry, the bell shape geometry can achieve better ACU performance, an optimal bell phosphor layer geometry with equal coating volume above and around the LED chip was achieved, for the corrected color temperature (CCT) of 4000 K, the angular CCT deviation of the optimal geometry is 62 K, while it is 382 K for the spherical cap geometry.


2015 ◽  
Vol 44 (10) ◽  
pp. 1030001
Author(s):  
黄马连 HUANG Ma-lian ◽  
陈焕庭 CHEN Huan-ting ◽  
周小方 ZHOU Xiao-fang ◽  
蔡嘉毅 CAI Jia-yi ◽  
周锦荣 ZHOU Jin-rong ◽  
...  

2018 ◽  
Vol 72 ◽  
pp. 02002
Author(s):  
Vo Phu Thoai ◽  
Nguyen Doan Quoc Anh

In this paper, we focus on researching the method, which the color homogeneity and the lumen output of multi-chip white LED lamps (MCW-LEDs) need to support for increasing the efficiency. The successful results can be achieved by mixing the green YPO4:Ce3+:Tb3+ phosphor with their phosphor compounding. Through experiment results, we assert that the MCW-LEDs can achieve the significant consequence in performance by following that method and it is also again confirmed that when the concentration of YPO4:Ce3+:Tb3+ has tendency to increase, which impulse the development of the color uniformity and the luminous efficacy of MCW-LEDs with average correlated color temperatures (CCT) of 8500 K, while the color quality scale shows signs of gradual decline. It is not difficult to gain incredible presentation of MCW-LEDs if we are clever in choosing the suitable concentration and size of YPO4:Ce3+:Tb3+.


2021 ◽  
Vol 10 (4) ◽  
pp. 1838-1845
Author(s):  
Phan Xuan Le ◽  
Le Tien

While the remote phosphor structure is not an appropriate solution for WLED color uniformity, it is more advantageous for the luminous output of WLED than the conformal phosphor or in-cup phosphor structure. Acknowledging the ability of the remote phosphor structure, many studies have been carried out to surmount the color quality disadvantage of this structure. A dual-layer remote phosphor configuration is proposed in this research paper to acquire better color quality for WLEDs through heightening the color rendering index (CRI) and the color quality scale (CQS). The color temperature of the WLED packages this study is 8500 K. By inserting a layer of green CaSO4:Ce3+,Mn2+ or red LiLaO2:Eu3+ phosphor on the yellow YAG:Ce3+ phosphor layer, the phosphor structure configuration can be constructed. Then, to get the best color quality, the concentration of added phosphor LiLaO2:Eu3+ would be changed. The findings showed the rise of CRI and CQS along with the LiLaO2:Eu3+, which implies the influence of LiLaO2:Eu3+ to the growth of red light components within WLEDs packages. The greater the concentration of LiLaO2:Eu3+ is, the more the CRI and CQS increase. Meanwhile, the luminous flux gains from the green phosphor CaSO4:Ce3+,Mn2+. Nevertheless, the luminous flux and color quality would decrease if the concentrations of both red LiLaO2:Eu3+ and green CaSO4:Ce3+,Mn2+ phosphors reach a certain corresponding level. Centered on the Mie-scattering theory and the law of Lambert-Beer, this result is illustrated. The findings in this research are vital references for manufacturing WLEDs with higher white light performance.


2011 ◽  
Vol 21 (2) ◽  
pp. 153
Author(s):  
Nguyen Nang Dinh ◽  
Do Ngoc Chung ◽  
Nguyen Phuong Hoai Nam ◽  
Pham Hong Duong

With the aim to prepare white Light Emitting Diode (WLED), the conjugate polymer films like (Poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) were investigated. Spectroscopic (absorption and emission) spectra of the MEH-PPV films showed that this polymer is suitable for casting onto the chips of the blue InGaN LED to make WLED. The luminous flux measured on the WLEDs in the integrating sphere proved that the white light emission can be obtained from the combination of inorganic LED and conjugate (MEH-PPV) polymers with an optimal thickness and a high quality. The aging process of MEH-PPV films was found to be strongly dependent post-treatment conditions. Reasonable heat treatment condition for the MEH-PPV polymers was suggested as in vacuum of 5×10-2 Pa at a temperature of 120°C in, for 2 hous.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 965
Author(s):  
Thi Hong Quan Vu ◽  
Thi Tuyet Doan ◽  
Barsha Jain ◽  
Ravi Teja Velpula ◽  
Tung Cao Thanh Pham ◽  
...  

A two-dimensional nanostructured fluoride red-emitting phosphor with an excellent quantum yield of ~91% is studied for cost-effective and high-color quality nanowire white light-emitting diodes (WLEDs). K2TiF6:Mn4+ phosphors are synthesized via an emulsification method using surfactants as sodium dodecyl sulphonate and oleic acid. The K2TiF6:Mn4+ phosphors in ultra-thin and nanosheet crystals are observed via scanning electron microscopy and high-resolution transmission electron microscopy. The surfactants are found to play a key role in inhibition of KTFM crystal growth process and stabilization of Mn4+ ions doping into the K2TiF6 host. The prepared phosphors exhibited intensive red emission at approximately 632 nm and excellent thermal stability in the range of 300 K–500 K upon 460 nm light excitation. Moreover, the K2TiF6:Mn4+ nanosheets were integrated on InGaN/AlGaN nanowire WLEDs for color quality study. The results show that the nanowire WLEDs with red-emitting phosphor exhibit unprecedentedly high color rendering index ~96.4, and correlated color temperature ~4450 K.


2013 ◽  
Vol 834-836 ◽  
pp. 1167-1171
Author(s):  
Yu Bing Gong ◽  
Ruan Ji Tian

The conformal coating phosphor converted light emitting diode (LED) is one of the important high power white LED. The thickness, concentration and concentration distribution of the phosphor layer has a critical influence on the LED optical performance. Previous literature mainly focus on the luminous flux of the LED. Few are involved with the relationship between the concentration and the correlated color temperature (CCT), and angular color uniformity (ACU) of LED. Based on the ray-tracing simulation, the luminous flux, CCT and ACU affected by the phosphor thickness, concentration and concentration distribution were obtained and studied. The results provide effective references for the phosphor coating process design and optical performance analysis of conformal coating LED.


2017 ◽  
Vol 35 (3) ◽  
pp. 618-625
Author(s):  
Tran Hoang Quang Minh ◽  
Nguyen Huu Khanh Nhan ◽  
Nguyen Doan Quoc Anh ◽  
Hsiao-Yi Lee

AbstractThis paper investigates a method for improving the lighting performance of white light-emitting diodes (WLEDs), packaged using two separating remote phosphor layers, yellow-emitting YAG:Ce phosphor layer and red-emitting α-SrO·3B2O3:Sm2+ phosphor layer. The thicknesses of these two layers are 800 μm and 200 μm, respectively. Both of them have been examined at average correlated color temperatures (CCT) of 7700 K and 8500 K. For this two-layer model, the concentration of red phosphor has been varied from 2 % to 30 % in the upper layer, while in the lower layer the yellow phosphor concentration was kept at 15 %. It was found interesting that the lighting properties, such as color rendering index (CRI) and luminous flux, are enhanced significantly, while the color uniformity is maintained at a level relatively close to the level in one-layer configuration (measured at the same correlated color temperature). Besides, the transmitted and reflected light of each phosphor layer have been revised by combining Kubelka-Munk and Mie-Lorenz theories. Through the analysis, it is demonstrated that the packaging configuration of two-layered remote phosphor that contains red-emitting α-SrO·3B2O3:Sm2+ phosphor particles provides a practical solution to general WLEDs lighting.


Sign in / Sign up

Export Citation Format

Share Document