scholarly journals Validation of photovoltaics powered UPQC using ANFIS controller in a standard microgrid test environment

Author(s):  
Sumana S ◽  
Dhanalakshmi R ◽  
Dhamodharan S

The power quality improvement becomes one of the important tasks while using microgrid as main power supply. Because the microgrid is combination of renewable energy resources. The renewable energy resources are intermittent in power supply and at the peak loading condition it has to supply the required power. So, the power quality problems may increase in that time. Out of all power quality issues the voltage drop and harmonic distortion is considered as the most serious one. In recent years unified power quality conditioner (UPQC) is emerged as most promising device which compensates both utility as well as customer side power quality disturbances in effective way. The compensating potentiality used in the UPQC is limited by the use of DC link voltage regulation and the conventional proportional integral (PI) controller. In this paper the compensating potentiality of the UPQC device is controlled by an adaptive neuro fuzzy inference system (ANFIS) control and it is powered from the available photovoltaics (PV) power generation. The effect of adding an intelligent UPQC is tested in the standard IEEE-14bus environment. MATLAB 2017b is used here for testing and plotting the simulation results.

Author(s):  
Toshiaki Kanemoto ◽  
Risa Kasahara ◽  
Hirotaka Honda ◽  
Toru Miyaji ◽  
Jin-Hyuk Kim

It is difficult, for renewable energy resources, to provide constant power with excellent quality for the grid system. This serial research proposes a power stabilization system with a pumped storage to guarantee the power quality and capacity, while the energy resources are at unstable and/or fluctuating conditions. The power stabilization system with the counter-rotating type pump-turbine unit was prepared and operated at the pumping and the turbine modes. The experiments have verified that this type pump-turbine unit is reasonably effective to stabilize momentarily/instantaneously the fluctuating power from the renewable energy resources.


In the modern era, most of the utility grid is connected with Renewable Energy resources (RERs). In addition to this, many power electronic converters and reactive power compensating devices are also incorporated into the existing grid. This makes the system complicated. Penetration of renewable energy resources affect many power system parameters like grid stability, quality of power, reactive power balance and Sufficient energy utilization. However, the Distributed Generation (DG) towards the power electronic interface creates some critical power quality events such as reactive power management, harmonics and voltage profile which makes the distributed system become a polluted one. This paper depicts the review of modelling and incorporation of various reactive power compensating devices like TCSC, SVC and STATCOM into RES. Power generation model of solar, wind and fuel farm is discussed in this paper. Reactive power compensating devices and its location and sizing are important for the stable and secure operation of the electric grid. Consequently, power quality issues, real-time interconnection issues and policies related to reactive power management are in this paper.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Marios N. Moschakis ◽  
Vasilis V. Dafopoulos ◽  
Emmanuel S. Karapidakis ◽  
Antonis G. Tsikalakis

This paper deals with the assessment of DC components generated by renewable energy resources with inverter-based interconnection system to the electric grid. DC injection is a critical issue related to power quality of distribution network systems with high penetration of inverter-based interconnection systems. This type of interface systems may improve the performance of the electric generation unit and affect positively or negatively the power quality of the distribution network depending on the proper or improper designation. The investigation of the various causes of DC components and the analytical assessment of their maximum levels are crucial for the proper operation of inverter-based interface systems and the limitation of DC injection. A method based on analytical calculations using a computer software has been implemented for the assessment of DC components contained on an inverter's output voltage when even harmonics are present on the network voltage. Moreover, a simulation package was used to demonstrate the existence of DC components under various conditions. It was proved by the current analysis that the amounts of DC components generated when even harmonics are present on the network voltage can be high under abnormalities on the power grid but they are not considerable under normal operating conditions.


2021 ◽  
Vol 2021 (2) ◽  
pp. 30-34
Author(s):  
Sergey Vladimirovich Golovko ◽  
Sergey Vladimirovich Kononenko

The paper considers the problems of designing autonomous power supply systems using the renewable energy resources. The efficiency of using energy resources in conditions of growing prices for electricity brings significant saving of both energy and financial factors. The analyses show that the main losses of energy resources are the result of inefficient use, distribution and consumption of electrical energy. There has been stated one of the most important problems of energy saving: many existing consumers are located at a significant distance from centralized power supply systems. Today connecting such consumers to large power grids is economically inexpedient. These facilities are supplied from the stand-alone power plants. According to the program of energy saving and energy efficiency improvement of FGC UES, PJSC, reducing electricity consumption for auxiliary needs of transformer substations is one of the main mechanisms for the program implementation.


2019 ◽  
Vol 8 (4) ◽  
pp. 1884-1889

As the issue of global warming is worsening, the shift towards using renewable energy resources is becoming more of an obligation rather than an option. With the continual decline in the cost of distributed small and medium-scale renewables and government sponsored programs, the outlook of growth of these converter-based resources remain high. Renewable energy resources are connected at the end-user terminals, in close proximity to the load at the distribution network. Such connection in the locale brings perceived benefits of transmission loss reduction, increased energy efficiency and improved voltage regulation. Yet, distributed renewable generation have noticeable effects on system’s power quality. This paper investigates the impacts of distributed wind generation on the voltage sag of distribution systems. A systematic approach is constructed to capture voltage sag occurrence incidents, due to wind generation connected at distribution nodes, and trigger the dynamic voltage restorer (DVR) into active operation mode to rectify the voltage sag problem. A test feeder system is represented using MATLAB/Simulink with wind turbines connected at several nodes of the system. A model for the DVR is developed in Simulink. It was then integrated with the test feeder system. Simulation results show that the incorporation of increased proportions of wind generation into the distribution network may give rise to negative operating conflicts as far as the voltage sag is concerned. Results manifest that the DVR is capable of effective correction of the voltage sag, caused by a three phase short-circuit fault, in presence of high penetration levels of variable wind generation connected at disparate locations in the distribution network.


Sign in / Sign up

Export Citation Format

Share Document