smart power
Recently Published Documents


TOTAL DOCUMENTS

1397
(FIVE YEARS 331)

H-INDEX

36
(FIVE YEARS 7)

Author(s):  
Seyed Hossein Rouhani ◽  
Hamed Mojallali ◽  
Alfred Baghramian

Simultaneous investigation of demand response programs and false data injection cyber-attack are critical issues for the smart power system frequency regulation. To this purpose, in this paper, the output of the studied system is simultaneously divided into two subsystems: one part including false data injection cyder-attack and another part without cyder-attack. Then, false data injection cyber-attack and load disturbance are estimated by a non-linear sliding mode observer, simultaneously and separately. After that, demand response is incorporated in the uncertain power system to compensate the whole or a part of the load disturbance based on the available electrical power in the aggregators considering communication time delay. Finally, active disturbance rejection control is modified and introduced to remove the false data injection cyber-attack and control the uncompensated load disturbance. The salp swarm algorithm is used to design the parameters. The results of several simulation scenarios indicate the efficient performance of the proposed method.


2022 ◽  
pp. 1028-1046
Author(s):  
Uttam Ghosh ◽  
Pushpita Chatterjee ◽  
Sachin Shetty

Software-defined networking (SDN) provides flexibility in controlling, managing, and dynamically reconfiguring the distributed heterogeneous smart grid networks. Considerably less attention has been received to provide security in SDN-enabled smart grids. Centralized SDN controller protects smart grid networks against outside attacks only. Furthermore, centralized SDN controller suffers from a single point of compromise and failure which is detrimental to security and reliability. This chapter presents a framework with multiple SDN controllers and security controllers that provides a secure and robust smart grid architecture. The proposed framework deploys a local IDS to provide security in a substation. Whereas a global IDS is deployed to provide security in control center and overall smart grid network, it further verifies the consequences of control-commands issued by SDN controller and SCADA master. Performance comparison and simulation result show that the proposed framework is efficient as compared to existing security frameworks for SDN-enabled smart grids.


2022 ◽  
pp. 325-347
Author(s):  
Nagi Faroug M. Osman ◽  
Ali Ahmed A. Elamin ◽  
Elmustafa Sayed Ali Ahmed ◽  
Rashid A. Saeed

A smart grid is an advanced utility, stations, meters, and energy systems that comprises a diversity of power processes of smart meters, and various power resources. The cyber-physical systems (CPSs) can play a vital role boosting the realization of the smart power grid. Applied CPS techniques that comprise soft computing methods, communication network, management, and control into a smart physical power grid can greatly boost to realize this industry. The cyber-physical smart power systems (CPSPS) are an effective model system architecture for smart grids. Topics as control policies, resiliency methods for secure utility meters, system stability, and secure end-to-end communications between various sensors/controllers would be quite interested in CPSPS. One of the essential categories in CPSPS applications is the energy management system (EMS). The chapter will spotlight the model and design the relationship between the grid and EMS networks with standardization. The chapter also highlights some necessary standards in the context of CPSPS for the grid infrastructure.


2021 ◽  
pp. 94-114
Author(s):  
Irina Budanova ◽  
Anastasia Shapovalova
Keyword(s):  

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3143
Author(s):  
Xia Zhou ◽  
Jianqiang Lu ◽  
Xiangpeng Xie ◽  
Chengjie Bu ◽  
Lei Wan ◽  
...  

Accurate prediction of power business communication bandwidth is the premise for the effectiveness of power communication planning and the fundamental guarantee for regular operation of power businesses. To solve the problem of scientifically and reasonably allocating bandwidth resources in smart parks, communication bandwidth prediction technology of intelligent power distribution service for smart parks is proposed in this paper. First, the characteristics of mixed service data arrival rate of power distribution and communication mixed services in smart parks were analyzed. Poisson process and interrupted Poisson process were used to simulate periodic and sudden business of smart parks to realize accurate simulation of the business arrival process. Then, a service arrival rate model based on the Markov modulation Poisson process was constructed. An active buffer management mechanism was used to dynamically discard data packets according to the set threshold and achieve accurate simulation of the packet loss rate during the arrival of smart park business. At the same time, considering the communication service quality index and bandwidth resource utilization, a business communication bandwidth prediction model of smart parks was established to improve the accuracy of business bandwidth prediction. Finally, a smart power distribution room in a smart park was used as an application scenario to quantitatively analyze the relationship between the communication service quality and bandwidth configuration. According to the predicted bandwidth, the reliability and effectiveness of the proposed method were verified by comparison with the elastic coefficient method.


Author(s):  
Sina Sontowski ◽  
Nigel Lawrence ◽  
Deepjyoti Deka ◽  
Maanak Gupta

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8451
Author(s):  
Wilson Pavon ◽  
Esteban Inga ◽  
Silvio Simani ◽  
Maddalena Nonato

This paper is a research article for finding the optimal control of smart power substations for improving the network parameters and reliability. The included papers are the most essential and main studies in the field, which propose a different approach to reach the best performance in electrical power systems. The parameters for improvement are the ability for tracking of the reference signal, stabilizing the system, reducing the error in steady state and controlling the behavior in transient state. The research focuses with the reaching a better transient stability considering voltage and frequency dynamic parameters. The optimal model for the control is focused on minimizing energy consumption but maintaining the controllable parameters, exploring some optimization techniques to find the optimal control, with of aim of minimizing the response time, the energy consumption, and maximizing the reliability by means of improving the controller to be more robust.


Sign in / Sign up

Export Citation Format

Share Document