Use of Power Routers and Renewable Energy Resources in Smart Power Supply Systems

Author(s):  
Yuri N. Bulatov ◽  
Andrey V. Kryukov ◽  
Grigory O. Arsentiev
2021 ◽  
Vol 2021 (2) ◽  
pp. 30-34
Author(s):  
Sergey Vladimirovich Golovko ◽  
Sergey Vladimirovich Kononenko

The paper considers the problems of designing autonomous power supply systems using the renewable energy resources. The efficiency of using energy resources in conditions of growing prices for electricity brings significant saving of both energy and financial factors. The analyses show that the main losses of energy resources are the result of inefficient use, distribution and consumption of electrical energy. There has been stated one of the most important problems of energy saving: many existing consumers are located at a significant distance from centralized power supply systems. Today connecting such consumers to large power grids is economically inexpedient. These facilities are supplied from the stand-alone power plants. According to the program of energy saving and energy efficiency improvement of FGC UES, PJSC, reducing electricity consumption for auxiliary needs of transformer substations is one of the main mechanisms for the program implementation.


Author(s):  
Sumana S ◽  
Dhanalakshmi R ◽  
Dhamodharan S

The power quality improvement becomes one of the important tasks while using microgrid as main power supply. Because the microgrid is combination of renewable energy resources. The renewable energy resources are intermittent in power supply and at the peak loading condition it has to supply the required power. So, the power quality problems may increase in that time. Out of all power quality issues the voltage drop and harmonic distortion is considered as the most serious one. In recent years unified power quality conditioner (UPQC) is emerged as most promising device which compensates both utility as well as customer side power quality disturbances in effective way. The compensating potentiality used in the UPQC is limited by the use of DC link voltage regulation and the conventional proportional integral (PI) controller. In this paper the compensating potentiality of the UPQC device is controlled by an adaptive neuro fuzzy inference system (ANFIS) control and it is powered from the available photovoltaics (PV) power generation. The effect of adding an intelligent UPQC is tested in the standard IEEE-14bus environment. MATLAB 2017b is used here for testing and plotting the simulation results.


Author(s):  
Gul Rukh ◽  
Amjdullah Khattak

Over the last two decades, Pakistan’s energy demand has grown exponentially with very diminutive measures taken by the government to fulfill the needs. The large power plant projects are cumbersome, take years to be completed and require plenty of time to get fully operational. The idea of distributed generation works well in this case. Renewable energy comes well into play when we talk about distributed generation but the dependability of renewable energy resources on back-up such as batteries makes them unappealing. The objective of this paper is to practically implement a backup for the renewable energy resources using a mechanical storage such as CAES (Compressed Air Energy System). The proposed model is a composite technology, which comprises of EES (Electrical Energy Storage) and electrical power supply system. Solar energy driven compressor is used to compress the air in a storage tank, which is used on demand to drive the generator coupled air turbine. The fact that the developed system is solar powered, no other fuel is used with air and it uses mechanical storage instead of conventional storage like batteries, which makes the developed prototype system efficient, economical and durable as compared to the existing CAES. This paper focuses on the thermodynamic investigation, design and finally implementing a prototype CAES for a small load as an un-interrupted power supply system.


Sign in / Sign up

Export Citation Format

Share Document