scholarly journals GENCO Optimal Bidding Strategy and Profit based Unit Commitment using Evolutionary Particle Swarm Optimization Illustrating the Effect of GENCO Market Power

Author(s):  
Adline Bikeri ◽  
Christopher Muriithi ◽  
Peter Kihato

<p>In deregulated electricity markets, generation companies (GENCOs) make unit commitment (UC) decisions based on a profit maximization objective in what is termed profit based unit commitment (PBUC). PBUC is done for the GENCOs demand which is a summation of its bilateral demand and allocations from the spot energy market. While the bilateral demand is known, allocations from the spot energy market depend on the GENCOs bidding strategy. A GENCO thus requires an optimal bidding strategy (OBS) which when combined with a PBUC approach would maximize operating profits. In this paper, a solution of the combined OBS-PBUC problem is presented. An evolutionary particle swarm optimization (EPSO) algorithm is implemented for solving the optimization problem. Simulation results carried out for a test power system with GENCOs of differing market strengths show that the optimal bidding strategy depends on the GENCOs market power. Larger GENCOs with significant market power would typically bid higher to raise market clearing prices while smaller GENCOs would typically bid lower to capture a larger portion of the spot market demand. It is also illustrated that the proposed EPSO algorithm has a better performance in terms of solution quality than the classical PSO algorithm.</p>

Author(s):  
Wei Li ◽  
Xiang Meng ◽  
Ying Huang ◽  
Soroosh Mahmoodi

AbstractMultiobjective particle swarm optimization (MOPSO) algorithm faces the difficulty of prematurity and insufficient diversity due to the selection of inappropriate leaders and inefficient evolution strategies. Therefore, to circumvent the rapid loss of population diversity and premature convergence in MOPSO, this paper proposes a knowledge-guided multiobjective particle swarm optimization using fusion learning strategies (KGMOPSO), in which an improved leadership selection strategy based on knowledge utilization is presented to select the appropriate global leader for improving the convergence ability of the algorithm. Furthermore, the similarity between different individuals is dynamically measured to detect the diversity of the current population, and a diversity-enhanced learning strategy is proposed to prevent the rapid loss of population diversity. Additionally, a maximum and minimum crowding distance strategy is employed to obtain excellent nondominated solutions. The proposed KGMOPSO algorithm is evaluated by comparisons with the existing state-of-the-art multiobjective optimization algorithms on the ZDT and DTLZ test instances. Experimental results illustrate that KGMOPSO is superior to other multiobjective algorithms with regard to solution quality and diversity maintenance.


Author(s):  
Ali Nasser Hussain ◽  
Ali Abduladheem Ismail

Unit Commitment (UC) is a nonlinear mixed integer-programming problem. UC is used to minimize the operational cost of the generation units in a power system by scheduling some of generators in ON state and the other generators in OFF state according to the total power outputs of generation units, load demand and the constraints of power system. This paper proposes an Improved Quantum Binary Particle Swarm Optimization (IQBPSO) algorithm. The tests have been made on a 10-units simulation system and the results show the improvement in an operation cost reduction after using the proposed algorithm compared with the ordinary Quantum Binary Particle Swarm Optimization (QBPSO) algorithm.


Sign in / Sign up

Export Citation Format

Share Document