scholarly journals Efficient resampling features and convolution neural network model for image forgery detection

Author(s):  
Manjunatha S ◽  
Malini M. Patil

The extended utilization of picture-enhancing or manipulating tools has led to ease of manipulating multimedia data which includes digital images. These manipulations will disturb the truthfulness and lawfulness of images, resulting in misapprehension, and might disturb social security. The image forensic approach has been employed for detecting whether or not an image has been manipulated with the usage of positive attacks which includes splicing, and copy-move. This paper provides a competent tampering detection technique using resampling features and convolution neural network (CNN). In this model range spatial filtering (RSF)-CNN, throughout preprocessing the image is divided into consistent patches. Then, within every patch, the resampling features are extracted by utilizing affine transformation and the Laplacian operator. Then, the extracted features are accumulated for creating descriptors by using CNN. A wide-ranging analysis is performed for assessing tampering detection and tampered region segmentation accuracies of proposed RSF-CNN based tampering detection procedures considering various falsifications and post-processing attacks which include joint photographic expert group (JPEG) compression, scaling, rotations, noise additions, and more than one manipulation. From the achieved results, it can be visible the RSF-CNN primarily based tampering detection with adequately higher accurateness than existing tampering detection methodologies.

2019 ◽  
Author(s):  
CHIEN WEI ◽  
Chi Chow Julie ◽  
Chou Willy

UNSTRUCTURED Backgrounds: Dengue fever (DF) is an important public health issue in Asia. However, the disease is extremely hard to detect using traditional dichotomous (i.e., absent vs. present) evaluations of symptoms. Convolution neural network (CNN), a well-established deep learning method, can improve prediction accuracy on account of its usage of a large number of parameters for modeling. Whether the HT person fit statistic can be combined with CNN to increase the prediction accuracy of the model and develop an application (APP) to detect DF in children remains unknown. Objectives: The aim of this study is to build a model for the automatic detection and classification of DF with symptoms to help patients, family members, and clinicians identify the disease at an early stage. Methods: We extracted 19 feature variables of DF-related symptoms from 177 pediatric patients (69 diagnosed with DF) using CNN to predict DF risk. The accuracy of two sets of characteristics (19 symptoms and four other variables, including person mean, standard deviation, and two HT-related statistics matched to DF+ and DF−) for predicting DF, were then compared. Data were separated into training and testing sets, and the former was used to predict the latter. We calculated the sensitivity (Sens), specificity (Spec), and area under the receiver operating characteristic curve (AUC) across studies for comparison. Results: We observed that (1) the 23-item model yields a higher accuracy rate (0.95) and AUC (0.94) than the 19-item model (accuracy = 0.92, AUC = 0.90) based on the 177-case training set; (2) the Sens values are almost higher than the corresponding Spec values (90% in 10 scenarios) for predicting DF; (3) the Sens and Spec values of the 23-item model are consistently higher than those of the 19-item model. An APP was subsequently designed to detect DF in children. Conclusion: The 23-item model yielded higher accuracy rates (0.95) and AUC (0.94) than the 19-item model (accuracy = 0.92, AUC = 0.90). An APP could be developed to help patients, family members, and clinicians discriminate DF from other febrile illnesses at an early stage.


Sign in / Sign up

Export Citation Format

Share Document