scholarly journals Power loss reduction by gryllidae optimization algorithm

Author(s):  
Kanagasabai Lenin

<p><span lang="EN-US">This paper projects Gryllidae Optimization Algorithm (GOA) has been applied to solve optimal reactive power problem. Proposed GOA approach is based on the chirping characteristics of Gryllidae. In common, male Gryllidae chirp, on the other hand some female Gryllidae also do as well. Male Gryllidae draw the females by this sound which they produce. Moreover, they caution the other Gryllidae against dangers with this sound. The hearing organs of the Gryllidae are housed in an expansion of their forelegs. Through this, they bias to the produced fluttering sounds. Proposed Gryllidae Optimization Algorithm (GOA) has been tested in standard IEEE 14, 30 bus test systems and simulation results show that the projected algorithms reduced the real power loss considerably.</span></p>

Author(s):  
Kanagasabai Lenin

In this work Tundra wolf algorithm (TWA) is proposed to solve the optimal reactive power problem. In the projected Tundra wolf algorithm (TWA) in order to avoid the searching agents from trapping into the local optimal the converging towards global optimal is divided based on two different conditions. In the proposed Tundra wolf algorithm (TWA) omega tundra wolf has been taken as searching agent as an alternative of indebted to pursue the first three most excellent candidates. Escalating the searching agents numbers will perk up the exploration capability of the Tundra wolf wolves in an extensive range.  Proposed Tundra wolf algorithm (TWA) has been tested in standard IEEE 14, 30 bus test systems and simulation results show the proposed algorithm reduced the real power loss effectively.


Author(s):  
Kanagasabai Lenin

<p>In this work Spinner Dolphin Swarm Algorithm (SDSA) has been applied to solve the optimal reactive power problem. Dolphins have numerous remarkable natural distinctiveness and living behavior such as echolocation, information interactions, collaboration, and partition of labor. Merging these natural distinctiveness and living behavior with swarm intelligence has been modeled to solve the reactive power problem. Proposed Spinner Dolphin Swarm Algorithm (SDSA) has been tested in standard IEEE 14,300 bus test system and simulation results show the projected algorithm reduced the real power loss extensively.</p>


Author(s):  
K. Lenin ◽  
B. Ravindhranath Reddy ◽  
M. Suryakalavathi

This paper presents a nature inspired heuristic optimization algorithm based on lightning progression called the propagation algorithm (PA) to solve optimal reactive power problem. It is from the imitated natural phenomenon of lightning and the procedure of step frontrunner propagation using the theory of fast particles. Three particle kinds are established to distinguish the transition particles that produce the first step frontrunner population, the space particles that attempt to turn out to be the frontrunner, and the prime particle that epitomize the particle thrilled from best positioned step frontrunner. The proposed PA has been tested in standard IEEE 30,57,118 bus test systems and simulation results show clearly about the better performance of the proposed algorithm in reducing the real power loss with control variables within the limits.


2018 ◽  
Vol 6 (3) ◽  
pp. 203-213
Author(s):  
K. Lenin

In this paper, Enhanced Artificial Bee Colony (EABC) algorithm is proposed for solving optimal reactive power problem. The projected method assimilates crossover operation from Genetic Algorithm (GA) with artificial bee colony (ABC) algorithm. The EABC strengthens the exploitation phase of ABC as crossover enhances exploration of search space.  Projected EABC algorithm has been tested on has been tested on standard IEEE 118 & practical 191 bus test systems and simulation results show clearly about the premium performance of the proposed algorithm in reducing the real power loss.


Author(s):  
Kanagasabai Lenin

<span>This paper proposes polar wolf optimization (PWO) algorithm to solve the optimal reactive power problem. Proposed algorithm enthused from actions of polar wolves. Leader’s wolves which denoted as </span>x<sub>α</sub> <span>are accountable for taking judgment on hunting, resting place, time to awaken etc. second level is </span>x<sub>β</sub> <span>those acts when there is need of substitute in first case. Then </span>x<sub>γ</sub> <span>be as final level of the wolves. In the modeling social hierarchy is developed to discover the most excellent solutions acquired so far. Then the encircling method is used to describe circle-shaped vicinity around every candidate solutions. In order to agents work in a binary space, the position modernized accordingly. Proposed PWO algorithm has been tested in standard IEEE 14, 30, 57,118,300 bus test systems and simulation results show the projected algorithms reduced the real power loss considerably.</span>


Author(s):  
Lenin Kanagasabai

<p><span>To solve optimal reactive power problem this paper projects Hyena Optimizer (HO) algorithm and it inspired from the behaviour of Hyena. Collaborative behaviour &amp; Social relationship between Hyenas is the key conception in this algorithm. Hyenas a form of carnivoran mammal &amp; deeds are analogous to canines in several elements of convergent evolution. Hyenas catch the prey with their teeth rather than claws – possess hardened skin feet with large, blunt, no retractable claws are adapted for running and make sharp turns. However, the hyenas' grooming, scent marking, defecating habits, mating and parental behaviour are constant with the deeds of other feliforms. Mathematical modelling is formulated for the basic attributes of Hyena. Standard IEEE 14,300 bus test systems used to analyze the performance of Hyena Optimizer (HO) algorithm. Loss has been reduced with control variables are within the limits.</span></p>


2020 ◽  
Vol 7 (2) ◽  
pp. E1-E6
Author(s):  
L. Kanagasabai

This paper aims to use the Rock Dove (RD) optimization algorithm and the Fuligo Septica optimization (FSO) algorithm for power loss reduction. Rock Dove towards a particular place is based on the familiar (sight) objects on the traveling directions. In the formulation of the RD algorithm, atlas and range operator, and familiar sight operators have been defined and modeled. Every generation number of Rock Dove is reduced to half in the familiar sight operator and Rock Dove segment, which hold the low fitness value that occupying the lower half of the generation will be discarded. Because it is implicit that the individual’s Rock Dove is unknown with familiar sights and very far from the destination place, a few Rock Doves will be at the center of the iteration. Each Rock Dove can fly towards the final target place. Then in this work, the FSO algorithm is designed for real power loss reduction. The natural vacillation mode of Fuligo Septica has been imitated to develop the algorithm. Fuligo Septica connects the food through swinging action and possesses exploration and exploitation capabilities. Fuligo Septica naturally lives in chilly and moist conditions. Mainly the organic matter in the Fuligo Septica will search for the food and enzymes formed will digest the food. In the movement of Fuligo Septica it will spread like a venous network, and cytoplasm will flow inside the Fuligo Septica in all ends. THE proposed RD optimization algorithm and FSO algorithm have been tested in IEEE 14, 30, 57, 118, and 300 bus test systems and simulation results show the projected RD and FSO algorithm reduced the real power loss. Keywords: optimal reactive power, transmission loss, Rock Dove, Fuligo Septica.


Author(s):  
Lenin Kanagasabai

<p class="Author">This paper proposes Enriched Brain Storm Optimization (EBSO) algorithm is used for soving reactive power problem. Human being are the most intellectual creature in this world. Unsurprisingly, optimization algorithm stimulated by human being inspired problem solving procedure should be advanced than the optimization algorithms enthused by collective deeds of ants, bee, etc. In this paper, we commence a new Enriched brain storm optimization algorithm, which was enthused by the human brainstorming course of action. In the projected Enriched Brain Storm Optimization (EBSO) algorithm, the vibrant clustering strategy is used to perk up the k-means clustering process. The most important view of the vibrant clustering strategy is that; regularly execute the k-means clustering after a definite number of generations, so that the swapping of information wrap all ideas in the clusters to accomplish suitable searching capability. This new approach leads to wonderful results with little computational efforts. In order to evaluate the efficiency of the proposed Enriched Brain Storm Optimization (EBSO) algorithm, has been tested standard IEEE 118 &amp; practical 191 bus test systems and compared to other standard reported algorithms. Simulation results show that Enriched Brain Storm Optimization (EBSO) algorithm is superior to other algorithms in reducing the real power loss.</p>


2018 ◽  
Vol 6 (8) ◽  
pp. 105-113
Author(s):  
K. Lenin

This paper proposes Improved Brain Storm Optimization (IBSO) algorithm is used for solving reactive power problem. predictably, optimization algorithm stimulated by human being inspired problem-solving procedure should be highly developed than the optimization algorithms enthused by collective deeds of ants, bee, etc. In this paper, a new Improved brain storm optimization algorithm defined, which was stimulated by the human brainstorming course of action. In the projected Improved Brain Storm Optimization (IBSO) algorithm, the vibrant clustering strategy is used to perk up the k-means clustering process & exchange of information wrap all ideas in the clusters to accomplish suitable searching capability. This new approach leads to wonderful results with little computational efforts. In order to evaluate the efficiency of the proposed Improved Brain Storm Optimization (IBSO) algorithm, has been tested standard IEEE 30 bus test system and compared to other standard reported algorithms. Simulation results show that Improved Brain Storm Optimization (IBSO) algorithm is superior to other algorithms in reducing the real power loss.


Author(s):  
Lenin Kanagasabai

<span>In this work two ground-breaking algorithms called; Sperm Motility (SM) algorithm &amp; Wolf Optimization (WO) algorithm is used for solving reactive power problem. In sperm motility approach spontaneous movement of the sperm is imitated &amp; species chemo attractant, sperms are enthralled in the direction of the ovum. In wolf optimization algorithm the deeds of wolf is imitated in the formulation &amp; it has a flag vector also length is equivalent to the whole sum of numbers in the dataset the optimization. Both the projected algorithms have been tested in standard IEEE 57,118, 300 bus test systems. Simulated outcomes reveal about the reduction of real power loss &amp; with variables are in the standard limits. Almost both algorithms solved the problem efficiently, yet wolf optimization has slight edge over the sperm motility algorithm in reducing the real power loss.</span>


Sign in / Sign up

Export Citation Format

Share Document