scholarly journals Maximum power point tracking of partially shading PV system using cuckoo search algorithm

Author(s):  
Ahmed Ibrahim ◽  
Raef Aboelsaud ◽  
Sergey Obukhov

This paper presents a cuckoo search (CS) algorithm for determining the global maximum power point (GMPP) tracking of photovoltaic (PV) under partial shading conditions (PSC). The conventional methods are fail to track the GMPP under PSC, which decrease the reliability of the power system and increase the system losses. The performance of the CS algorithm is compared with perturb and observe (P&O) algorithm for different cases of operations of PV panels under PSC. The CS algorithm used in this work to control directly the duty cycle of the DC-DC converter without proportional integral derivative (PID) controller. The proposed CS model can track the GMPP very accurate with high efficiency in less time under different conditions as well as in PSC.

2020 ◽  
Vol 12 (9) ◽  
pp. 3652
Author(s):  
Fahd A. Alturki ◽  
Abdullrahman A. Al-Shamma’a ◽  
Hassan M. H. Farh

Under partial shading conditions (PSCs), solar photovoltaic (PV) energy systems generate multiple peaks; one global peak (GP) and several local peaks (LPs). Thus, tracking the GP of the PV systems under PSCs is necessary to enhance the system reliability and efficiency. Conventional maximum power point tracker (MPPT) algorithms are capable of tracking the unique peak under uniform conditions but they fail to track the GP under PSCs. To the best of our knowledge, this paper represents the first study that introduces a comprehensive comparison of three efficient maximum power point tracker (MPPT) algorithms that are used to extract the GP of the PV system under both uniform and PSCs. These MPPT techniques include two metaheuristic techniques, which are cuckoo search optimization (CSO) and particle swarm optimization (PSO) techniques in addition to one conventional MPPT; perturb and observe (P&O). Although the simulation and dSPACE-based experimental results demonstrated the superiority of CSO and PSO in tracking the GP, CSO requires less tracking time and thus provides a higher efficiency than the PSO. In addition, P&O can be used to follow the first peak, regardless if it is a local peak or global peak with notable oscillation.


2019 ◽  
Vol 162 ◽  
pp. 117-126 ◽  
Author(s):  
Mohamed I. Mosaad ◽  
M. Osama abed el-Raouf ◽  
Mahmoud A. Al-Ahmar ◽  
Fahd A. Banakher

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2521
Author(s):  
Alfredo Gil-Velasco ◽  
Carlos Aguilar-Castillo

There are multiples conditions that lead to partial shading conditions (PSC) in photovoltaic systems (PV). Under these conditions, the harvested energy decreases in the PV system. The maximum power point tracking (MPPT) controller aims to harvest the greatest amount of energy even under partial shading conditions. The simplest available MPPT algorithms fail on PSC, whereas the complex ones are effective but require high computational resources and experience in this type of systems. This paper presents a new MPPT algorithm that is simple but effective in tracking the global maximum power point even in PSC. The simulation and experimental results show excellent performance of the proposed algorithm. Additionally, a comparison with a previously proposed algorithm is presented. The comparison shows that the proposal in this paper is faster in tracking the maximum power point than complex algorithms.


2018 ◽  
Vol 7 (1) ◽  
pp. 66-85 ◽  
Author(s):  
Afef Badis ◽  
Mohamed Habib Boujmil ◽  
Mohamed Nejib Mansouri

This article concerns maximizing the energy reproduced from the photovoltaic (PV) system, ensured by using an efficient Maximum Power Point Tracking (MPPT) process. The process should be fast, rigorous and simple for implementation because the PV characteristics are extremely affected by fast changing conditions and Partial Shading (PS). PV systems are popularly known to have many peaks (one Global Peak (GP) and several local peaks). Therefore, the MPPT algorithm should be able to accurately detect the unique GP as the maximum power point (MPP), and avoid any other peak to mitigate the effect of (PS). Usually, with no shading, nearly all the conventional methods can easily reach the MPP with high efficiency. Nonetheless, they fail to extract the GP when PS occurs. To overcome this problem, Evolutionary Algorithms (AEs), namely the Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are simulated and compared to the conventional methods (Perturb & Observe) under the same software.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4971
Author(s):  
Hegazy Rezk ◽  
Ahmed Fathy

A significant growth in PV (photovoltaic) system installations have been observed during the last decade. The PV array has a nonlinear output characteristic because of weather intermittency. Partial shading is an environmental phenomenon that causes multiple peaks in the power curve and has a negative effect on the efficiency of the conventional maximum power point tracking (MPPT) methods. This tends to have a substantial effect on the overall performance of the PV system. Therefore, to enhance the performance of the PV system under shading conditions, the global MPPT technique is mandatory to force the PV system to operate close to the global maximum. In this paper, for the first time, a stochastic fractal search (SFS) optimization algorithm is applied to solve the dilemma of tracking the global power of PV system based triple-junction solar cells under shading conditions. SFS has been nominated because it can converge to the best solution at a fast rate. Moreover, balance between exploration and exploitation phases is one of its main advantages. Therefore, the SFS algorithm has been selected to extract the global maximum power point (MPP) under partial shading conditions. To prove the superiority of the proposed global MPPT–SFS based tracker, several shading scenarios have been considered. The idea of changing the shading scenario is to change the position of the global MPP. The obtained results are compared with common optimizers: Antlion Optimizer (ALO), Cuckoo Search (CS), Flower Pollination Algorithm (FPA), Firefly-Algorithm (FA), Invasive-Weed-Optimization (IWO), JAYA and Gravitational Search Algorithm (GSA). The results of comparison confirmed the effectiveness and robustness of the proposed global MPPT–SFS based tracker over ALO, CS, FPA, FA, IWO, JAYA, and GSA.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4938
Author(s):  
Waleed Al Abri ◽  
Rashid Al Abri ◽  
Hassan Yousef ◽  
Amer Al-Hinai

Partial shading conditions (PSCs) can significantly reduce the output energy produced by photovoltaic (PV) systems. Moreover, when such conditions occur, conventional and advanced maximum power point tracking (MPPT) systems fail to operate the PV system at its peak because the bypassing diodes may cause the PV system to become trapped at a low power point when they are in conduction mode. The PV system can be operated at the global maximum power point (MPP) with the help of global peak searching tools. However, the frequent use of these tools will reduce the output of PV systems since they force the PV system to operate outside its power region while scanning the I-V curve in order to determine the global MPP. Thus, the global peak searching tools should be deployed only when a PSC occurs. In this paper, a simple and accurate method is proposed for detecting PSCs by means of monitoring the sign of voltage changes (positive or negative). The method predicts a PSC if the sign of successive voltage changes is the same for a certain number of successive changes. The proposed method was tested on two types of PV array configurations (series and series–parallel) with several shading patterns emulated on-site. The proposed method correctly and timely identified all emulated shading patterns. It can be used to trigger the global MPP searching techniques for improving the PV system’s output under PSCs; furthermore, it can be used to notify the PV system’s operator of the occurrence of PSCs.


Sign in / Sign up

Export Citation Format

Share Document