scholarly journals Load flow analysis of 10 bus loop distribution network excited by a generator simulated using open modelica

Author(s):  
P. Abirami ◽  
C. N. Ravi

<span lang="EN-CA">In recent days, due to advancement in technology, the end users are facing severe power quality issues. Load flow analysis is one of the fundamental methodologies in solving power network problems. The key importance of Load flow analysis is to improve the performance of distribution network. The main intention of this reserach is to carry out the load flow and voltage stability analysis of 10 bus loop distribution network energized by a generator. Load flow analysis is carried out by using Newton Raphson method. The per unit voltage and angle of the proposed network is determined in all 10 buses by load flow analysis. The voltage stability analysis is implemented by introducing a fault in the network. Here, a power fault is injected at bus 4 between the time interval of 2 to 3 sec to analyse the stability of the system. The voltage stability of the system is analysed for the network with and without automatic voltage regulator (AVR). The AVR unit is tuned by using power system stabilizer (PSS). The results are examined by simulating the network using open modelica connection editor.  From the simulation results the per unit voltages and angles at all 10 buses are determined for the network with and without AVR. By comparing both the results it is proved that the network with AVR has better voltage stability than the other. Thus, the voltage stability of the system is improved by connecting the generator with AVR and PSS.</span>

With the ever increasing demand of power, the major concern that has aroused is the problem of voltage instability. Due to voltage instability several major power system failures and blackouts occur. Voltage stability thus becomes a necessity. For this FACTS devices like SVC, STATCOM, etc. are used. Load Flow analysis and Continuation Power Flow Analysis is done to identify the weak buses and FACTS devices are installed in these weak buses to enhance the voltage stability. This paper presents a network formulation of IEEE 30 Bus test system using MATLAB and PSAT software and then comparing the effect of SVC and STATCOM for voltage stability enhancement.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Alma Halilović ◽  
Lejla Mujanović ◽  
Jasna Hivziefendić ◽  

The aim of this paper is to present and discuss the influence of distributed generation on power quality. Nowadays, interest in power quality has increased since it has become a very important issue in power system delivery. One of the major problems of ensuring a certain level of power quality are harmonics. The aim of this project is to investigate an impact of photovoltaic (PV) on harmonic voltage distortion (HD) in real MV distribution network. Different scenarios will be implemented where solar power plant is going to be modelled with high variability of load and generation to see their effects on the systems power quality (PQ). Those scenarios are when PV is disconnected from the grid and PVs are connected with 2 different powers. Results presented below showed that PV improves power quality of the system, because their inverters are source of harmonics and they increase HD. However, that impact is not very significant and harmonic limits are not violated. A load flow analysis is done for the model of test system 110/35/10kV in which a distributed generator is added, that is on-grid or off-grid. The network modelling and simulation is done in DIgSILENT PowerFactory software.


Sign in / Sign up

Export Citation Format

Share Document