scholarly journals Voltage Stability Augmentation using Shunt FACTS

With the ever increasing demand of power, the major concern that has aroused is the problem of voltage instability. Due to voltage instability several major power system failures and blackouts occur. Voltage stability thus becomes a necessity. For this FACTS devices like SVC, STATCOM, etc. are used. Load Flow analysis and Continuation Power Flow Analysis is done to identify the weak buses and FACTS devices are installed in these weak buses to enhance the voltage stability. This paper presents a network formulation of IEEE 30 Bus test system using MATLAB and PSAT software and then comparing the effect of SVC and STATCOM for voltage stability enhancement.

Load Flow Analysis helps in error free operation of power system and also useful in forecasting the required equipment for expansion of the system. By forecasting the magnitude of the supply required along with effects caused by single or multiple defects in the system and calculating the magnitude of errors, it is very easy to compensate them using various techniques with minimum cost and effort. It means before installation the favorable sites and size of the infrastructure used are determined to maintain the power factor in the system. Here Power Flow Analysis is performed using Newton Raphson method. This method is used in solving power flow studies of various number of busesunder various conditions. In any network there will be undesired rise or drop or dissipation of voltage. Voltage instability decreases the efficiency of the system and also damages the equipment used. Hence voltage instability analysis is performed and magnitude of the instability is calculated and compensated using various techniques. Here we performed Load Flow Analysis on a 5bus system and Voltage Instability Analysis is also performed to the same with necessary outputs.[7]


Author(s):  
Ba-swaimi Saleh ◽  
Lee Jun Yin ◽  
Renuga Verayiah

Voltage stability is necessary in order to maintain the health of the grid system. In recent years, the load demand is increasing from time-to-time which compromised the stability of the system. On that purpose, several methods on enhancing the voltage stability of the system was introduced such as the transformer tap and FACTS devices. In a general overview, this study is to propose a several power compensation techniques on the base case of an IEEE-33 bus whereby power flow analysis using Netwon- Raphson in PSS/E software is performed. Afterwards, distributed generation (DG) and Static VAR Compensator (SVC) will be implemented within the distribution network to compensate the voltage instability losses based on the weakest index from the bus system. From both the cases which is proposed earlier, a comparison study is conducted on the performance on both DG and SVC within the proposed network.


2012 ◽  
Vol 63 (5) ◽  
pp. 316-321 ◽  
Author(s):  
Fatiha Lakdja ◽  
Fatima Zohra Gherbi ◽  
Redouane Berber ◽  
Houari Boudjella

Very few publications have been focused on the mathematical modeling of Flexible Alternating Current Transmission Systems (FACTS) -devices in optimal power flow analysis. A Thyristor Controlled Series Capacitors (TCSC) model has been proposed, and the model has been implemented in a successive QP. The mathematical models for TCSC have been established, and the Optimal Power Flow (OPF) problem with these FACTS-devices is solved by Newtons method. This article employs the Newton- based OPF-TCSC solver of MATLAB Simulator, thus it is essential to understand the development of OPF and the suitability of Newton-based algorithms for solving OPF-TCSC problem. The proposed concept was tested and validated with TCSC in twenty six-bus test system. Result shows that, when TCSC is used to relieve congestion in the system and the investment on TCSC can be recovered, with a new and original idea of integration.


Author(s):  
Rudy Gianto ◽  
Purwoharjono Purwoharjono

This paper proposes a new and simple method to incorporate three-phase power transformer model into distribution system load flow (DSLF) analysis. The objective of the present work is to find a robust and efficient technique for modeling and integrating power transformer in the DSLF analysis. The proposed transformer model is derived based on nodal admittance matrix and formulated by using the symmetrical component theory. Load flow formulation in terms of branch currents and nodal voltages is also proposed in this paper to enable integrating the model into the DSLF analysis. Singularity that makes the calculations in forward/backward sweep (FBS) algorithm is difficult to be carried out. It can be avoided in the method. The proposed model is verified by using the standard IEEE test system.


In this paper calculations are made to find out the power flow regulation capabilities of Unified Power Flow Controller (UPFC) in load flow analysis with loads which are voltage dependent. New equations for load flow analysis are developed that includes the models of voltage sensitive loads and voltage sources model of UPFC. Newton Raphson algorithm is used to solve the power flow equations of the network. UPFC voltage source model when included in the power equations has unique advantages over other modeling approaches. Analysis is done for two types of Loads. In the first analysis Constant current, Constant Power and Constant Impedance type of loads are examined. In the second analysis Composite loads are analyzed. The results of analysis on standard 5 bus system is presented here as a case study.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Alma Halilović ◽  
Lejla Mujanović ◽  
Jasna Hivziefendić ◽  

The aim of this paper is to present and discuss the influence of distributed generation on power quality. Nowadays, interest in power quality has increased since it has become a very important issue in power system delivery. One of the major problems of ensuring a certain level of power quality are harmonics. The aim of this project is to investigate an impact of photovoltaic (PV) on harmonic voltage distortion (HD) in real MV distribution network. Different scenarios will be implemented where solar power plant is going to be modelled with high variability of load and generation to see their effects on the systems power quality (PQ). Those scenarios are when PV is disconnected from the grid and PVs are connected with 2 different powers. Results presented below showed that PV improves power quality of the system, because their inverters are source of harmonics and they increase HD. However, that impact is not very significant and harmonic limits are not violated. A load flow analysis is done for the model of test system 110/35/10kV in which a distributed generator is added, that is on-grid or off-grid. The network modelling and simulation is done in DIgSILENT PowerFactory software.


Sign in / Sign up

Export Citation Format

Share Document