Harmonic Elimination Using STATCOM for SEIG Fed Induction Motor Load

Author(s):  
Satyanarayana Gorantla ◽  
Goli Ravi Kumar

Non-linear loads connected to distribution system induce harmonics in to source components and the presence of harmonics in source components affects the performance of other sensitive loads connected at the same point. Induction motor load for drive system should be operated with variable frequency and variable voltage for its speed control. To vary the voltage and frequency, induction motor is fed from an inverter. This total drive set-up constitutes non-linear load type and will be the source of harmonics. This paper depicts the suppression of harmonics with STATCOM in distribution system when induction motor load is fed from SEIG (singly excited inductin generator). STATCOM is controlled with simple synchronous reference frame theory and the results are shown for source current, load current. THD in source current and load current was also shown for the said system. System for single-phase and three-phase induction motor drive was developed and results are shown using MATLAB/SIMULINK software.

2020 ◽  
Vol 5 (1) ◽  
pp. 149-163
Author(s):  
Haider Muhamad Husen ◽  
Salar Ahmed Qadir

Unbalanced input source voltages generate extra current harmonics in addition to non-linear loads which distorts the power quality in the entire power systems. Three-phase multi-level neutral point clamped (NPC) converter based shunt active harmonic filter (SAHF) are used as a solution to overcome problems due to current harmonics. In this work, synchronous reference frame (d-q) algorithm is selected to detect the harmonic current components, Proportional-integral (PI) controller is utilized to ameliorate the storage of energy in the dc-link capacitor and the multilevel space vector pulse width modulation (MSVPWM) strategy determines the switching pulses of NPC inverter. Under balanced input supply voltages condition, the proposed MSVPWM achieved a mitigation of source current THD of 3.58 % as compared to 28.57 % prior to compensation on non-linear load. Furthermore, the MSVPWM technique was compared with and without compensation under unbalanced input source voltages and the results shows that the proposed method achieved reduction in source current THD of 3.96 % as compared to 29.76 % after and before compensation respectively. The proposed MSVPWM based-SAPF model was also compared with conventional SVPWM under balanced and unbalanced input supply voltages conditions. The results show that MSVPWM performed better than CSVPWM. The simulated results obtained by MATLAB/SIMULINK power system environment. All the results for the presented work are within IEEE-519 harmonics standard with non-linear loads under balanced and unbalanced voltages condition. 


2018 ◽  
Vol 7 (4.24) ◽  
pp. 9
Author(s):  
Ahmed Mohammed Mohsin Alzubaidi ◽  
P. V. Ramana Rao

DSTATCOM is one among FACTS controllers to reduce harmonic effect in power system. Presence of non-linear loads induces harmonics to source components which in-turn affects other sensitive loads. Parallel custom devices share the compensating currents and as a result stress on individual custom device reduces. This paper presents power quality improvement using parallel DSTATCOM in power distribution system. The parallel DSTATCOM are controlled with a common single control scheme using synchronous reference frame theory. Proposed concept was implemented with MATLAB/SIMULINK software and results were discussed considering different loading conditions of the proposed system like balanced case non-linear load and unbalanced case non-linear load conditions.


Author(s):  
P. Avirajamanjula ◽  
P. Palanivel

A direct Selective current harmonic elimination pulse width modulation technique is proposed for induction motor drive fed from voltage source inverter. The developed adaptive filtering algorithm for the selective current harmonic elimination in a three phase Voltage Source Inverter is a direct method to improve the line current quality of the Voltage Source Inverter base drive at any load condition. The self-adaptive algorithm employed has the capability of managing the time varying nature of load (current). The proposed Normalized Least Mean Squares algorithm based scheme eliminates the selected dominant harmonics in load current using only the knowledge of the frequencies to be eliminated. The algorithm is simulated using Matlab/Simulink tool for a three-phase Voltage Source Inverter to eliminate the fifth and seventh harmonics. The system performance is analyzed based on the simulation results considering total harmonic distortion, magnitude of eliminated harmonics and harmonic spectrum. The corroboration is done in the designed Voltage Source Inverter feeding induction motor using digital signal processor-TMS320L2812.The developed algorithm is transferred to digital signal processor using VisSim<sup>TM</sup> software.


Sign in / Sign up

Export Citation Format

Share Document