source current
Recently Published Documents


TOTAL DOCUMENTS

328
(FIVE YEARS 102)

H-INDEX

22
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Caibin Sheng ◽  
Rui Lopes ◽  
Gang Li ◽  
Sven Schuierer ◽  
Annick Waldt ◽  
...  

Droplet-based single-cell omics, including single-cell RNA sequencing (scRNAseq), single cell CRISPR perturbations (e.g., CROP-seq) and single-cell protein and transcriptomic profiling (e.g., CITE-seq) hold great promise for comprehensive cell profiling and genetic screening at the single cell resolution, yet these technologies suffer from substantial noise, among which ambient signals present in the cell suspension may be the predominant source. Current efforts to address this issue are highly specific to a certain technology, while a universal model to describe the noise across these technologies may reveal this common source thereby improving the denoising accuracy. To this end, we explicitly examined these unexpected signals and observed a predictable pattern in multiple datasets across different technologies. Based on the finding, we developed single cell Ambient Remover (scAR) which uses probabilistic deep learning to deconvolute the observed signals into native and ambient composition. scAR provides an efficient and universal solution to count denoising for multiple types of single-cell omics data, including single cell CRISPR screens, CITE-seq and scRNAseq. It will facilitate the application of single-cell omics technologies.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 446
Author(s):  
Minghui Zhang ◽  
Fang Lin ◽  
Wei Wang ◽  
Feng Wen ◽  
Genqiang Chen ◽  
...  

In this work, a hydrogen-terminated (H-terminated) diamond field effect transistor (FET) with HfAlOx/Al2O3 bilayer dielectrics is fabricated and characterized. The HfAlOx/Al2O3 bilayer dielectrics are deposited by the atomic layer deposition (ALD) technique, which can protect the H-terminated diamond two-dimensional hole gas (2DHG) channel. The device demonstrates normally-on characteristics, whose threshold voltage (VTH) is 8.3 V. The maximum drain source current density (IDSmax), transconductance (Gm), capacitance (COX) and carrier density (ρ) are −6.3 mA/mm, 0.73 mS/mm, 0.22 μF/cm2 and 1.53 × 1013 cm−2, respectively.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8203
Author(s):  
Piotr Bogusz ◽  
Mariusz Korkosz ◽  
Jan Prokop ◽  
Mateusz Daraż

This paper presents a description and the results of simulations and laboratory tests of proposed methods for dependent torque control in a Switched Reluctance Motor (SRM). The proposed methods are based on Dependent Torque Motor Control (Rising Slope), DTMC(RC), and Dependent Torque Motor Control (Falling Slope), DTMC(FC). The results of these studies were compared with those on the Classical Torque Motor Control (CTMC) method. Studies were conducted for each of the analyzed control methods by determining the efficiency of the drive and the RMS of the source current and analyzing the vibrations generated for each of the control methods. The harmonics of the phase currents, which caused an increase in the level of vibrations generated, were determined. The usefulness of the proposed methods for controlling SRMs was assessed based on simulations and experiments. Additionally, the natural frequencies of the stator of the tested SRM were determined by a simulation using the Ansys Maxwell suite. The levels of vibration acceleration generated by the SRM were compared for the considered control methods.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1494
Author(s):  
Jhang-Jie Jian ◽  
Hsin-Ying Lee ◽  
Edward-Yi Chang ◽  
Ching-Ting Lee

In this study, an electron-beam lithography system was employed to pattern 80-nm-wide and 980-nm-spaced multi-mesa-channel for fabricating AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors (MOSHEMTs). Since the structure of multi-mesa-channel could enhance gate control capabilities and reduce the self-heating effect in the channel, the performance of the MOSHEMTs could be obviously improved. The direct current performance metrics of the multi-mesa-channel-structured MOSHEMTs, such as a saturation drain-source current of 929 mA/mm, maximum extrinsic transconductance of 223 mS/mm, and on-resistance of 2.1 Ω-mm, were much better than those of the planar-structured MOSHEMTs. Moreover, the threshold voltage of the multi-mesa-channel-structured MOSHEMTs shifted toward positive voltage from −2.6 to −0.6 V, which was attributed to the better gate control capability. Moreover, the multi-mesa-channel-structured MOSHEMTs also had superior high-frequency and low-frequency noise performance. A low Hooge’s coefficient of 1.17 × 10−6 was obtained.


Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 848
Author(s):  
Chong-Rong Huang ◽  
Hsien-Chin Chiu ◽  
Chia-Hao Liu ◽  
Hsiang-Chun Wang ◽  
Hsuan-Ling Kao ◽  
...  

In this study, an AlGaN/GaN high-electron-mobility transistor (HEMT) was grown through metal organic chemical vapor deposition on a Qromis Substrate Technology (QST). The GaN on the QST device exhibited a superior heat dissipation performance to the GaN on a Si device because of the higher thermal conductivity of the QST substrate. Thermal imaging analysis indicated that the temperature variation of the GaN on the QST device was 4.5 °C and that of the GaN on the Si device was 9.2 °C at a drain-to-source current (IDS) of 300 mA/mm following 50 s of operation. Compared with the GaN HEMT on the Si device, the GaN on the QST device exhibited a lower IDS degradation at high temperatures (17.5% at 400 K). The QST substrate is suitable for employment in different temperature environments because of its high thermal stability.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7042
Author(s):  
Chiara Ramella ◽  
Paolo Colantonio ◽  
Marco Pirola

This work presents a comprehensive theoretical analysis of current-mode power amplifiers as a function of input power for different biasing classes under the common simplifying assumption of constant transconductance and hard current cut-off/saturation. Typically, the theoretical analysis of power amplifier performance and behavior are carried out only at maximum output power. However, to achieve high data-rates, modern telecommunication systems adopt signals characterized by a very high peak-to-average power ratio, thus it is useful to analyze the power amplifier behavior as a function of power back-off. Moreover, in many cases, to enhance the efficiency and/or to apply harmonic shaping techniques, a clipped drain-source current, which approaches a square wave, is required. The classical analysis can be extended to low power levels only under the assumption of power-independent conduction angle, which is true only for class-A and class-B amplifiers, and does not take into account possible waveform clipping at maximum current. This work presents a complete theoretical Fourier analysis of FET-based power amplifiers as a function of quiescent drain-source current at any input power level and accounting for the clipped current case, up to the square-wave limit, reorganizing and completing the material that can be found in classical textbooks in the field.


2021 ◽  
Vol 18 (1) ◽  
pp. 52-61
Author(s):  
Satish Kumar Gudey ◽  
Vinay Kumar Naguboina

In this paper a three phase Shunt Active Power Filter (ShAPF) is proposed to address the current related issues in a three phase Electrical Distribution System (EDS). A sliding mode controller (SMC) and an Enhanced Exponential Reaching Law based SMC (EERL-SMC) is proposed for a ShAPF to compensate the load current. The controller’s performance is tested by injecting the current harmonics into the system. A non-linear load along with different loads on the distribution side is connected in parallel in a distribution network at Point of common coupling (PCC). Modelling of the system is done using state space analysis. Stability of the system is analyzed using the state feedback approach. The reference source currents are generated using instantaneous PQ theory. For variations in the load, the THD in the source current is realized. It is found that EERL-SMC is more effective for a ShAPF in reducing the high frequency oscillations and settling time for convergence. The source voltage and current waveforms are observed to be sinusoidal in nature. Both the controllers are effective in reducing the THD levels in the source current as per the IEEE standards. A comparison between the controllers is presented in terms of settling time, THD in source current. PSCAD v4.6 is used for simulation works.


2021 ◽  
Vol 13 (17) ◽  
pp. 9715
Author(s):  
Zahra Malekjamshidi ◽  
Mohammad Jafari ◽  
Jianguo Zhu ◽  
Marco Rivera ◽  
Wen Soong

This paper deals with the design, control, and implementation of a three-phase ac–ac mobile utility power supply using a matrix converter for airplane servicing applications. Using a matrix converter as a compact direct ac-to-ac converter can provide savings in terms of the size and cost of a mobile power supply compared to common back-to-back converters. Furthermore, using the proposed direct matrix converter eliminates the need for bulky electrolytic capacitors and increases the system’s reliability and lifetime. A finite control set model predictive control is used to generate a high-quality 115 V/400 Hz output voltage and a low-harmonic-distortion source current with a unity input power factor for various load conditions, including balanced, unbalanced, linear, and nonlinear loads. The predictive strategy is used to control the output voltage and source current for each possible switching state in order to simultaneously track the references. To achieve a further reduction in the system’s size and cost, an active damping strategy is used to compensate for the instability caused by the input filter in contrast to the passive method. Experimental tests were conducted on a prototype matrix converter to validate the performance of the proposed control strategy.


Sign in / Sign up

Export Citation Format

Share Document