scholarly journals Effect of Hypertonic Saline on Cerebral Blood Flow in Poor-Grade Patients With Subarachnoid Hemorrhage

Stroke ◽  
2003 ◽  
Vol 34 (6) ◽  
pp. 1389-1396 ◽  
Author(s):  
Ming-Yuan Tseng ◽  
Pippa G. Al-Rawi ◽  
John D. Pickard ◽  
Frank A. Rasulo ◽  
Peter J. Kirkpatrick
Stroke ◽  
2010 ◽  
Vol 41 (1) ◽  
pp. 122-128 ◽  
Author(s):  
Pippa G. Al-Rawi ◽  
Ming-Yuan Tseng ◽  
Hugh K. Richards ◽  
Jurgens Nortje ◽  
Ivan Timofeev ◽  
...  

2007 ◽  
Vol 107 (2) ◽  
pp. 274-282 ◽  
Author(s):  
Ming-Yuan Tseng ◽  
Pippa G. Al-Rawi ◽  
Marek Czosnyka ◽  
Peter J. Hutchinson ◽  
Hugh Richards ◽  
...  

Object Systemic administration of 23.5% hypertonic saline enhances cerebral blood flow (CBF) in patients with poor-grade spontaneous subarachnoid hemorrhage (SAH). Whether the increment of change in CBF correlates with changes in autoregulation of CBF or outcome at discharge remains unknown. Methods Thirty-five patients with poor-grade spontaneous SAH received 2 ml/kg 23.5% hypertonic saline intravenously, and they underwent bedside transcranial Doppler (TCD) ultrasonography and intracranial pressure (ICP) monitoring. Seventeen of them underwent Xe-enhanced computed tomography (CT) scanning for measuring CBF. Outcome was assessed using the modified Rankin Scale (mRS) at discharge from the hospital. The data were analyzed using repeated-measurement analysis of variance and Dunnett correction. A comparison was made between patients with favorable and unfavorable outcomes using multivariate logistic regression. Results The authors observed a maximum increase in blood pressure by 10.3% (p <0.05) and cerebral perfusion pressure (CPP) by 21.2% (p <0.01) at 30 minutes, followed by a maximum decrease in ICP by 93.1% (p <0.01) at 60 minutes. Changes in ICP and CPP persisted for longer than 180 and 90 minutes, respectively. The results of TCD ultrasonography showed that the baseline autoregulation was impaired on the ipsilateral side of ruptured aneurysm, and increments in flow velocities were higher and lasted longer on the contralateral side (48.75% compared with 31.96% [p = 0.045] and 180 minutes compared with 90 minutes [p <0.05], respectively). The autoregulation was briefly impaired on the contralateral side during the infusion. A dose-dependent effect of CBF increments on favorable outcome was seen on Xe-CT scans (mRS Score 1–3, odds ratio 1.27 per 1 ml/100 g tissue × min, p = 0.045). Conclusions Bolus systemic hypertonic saline therapy may be used for reversal of cerebral ischemia to normal perfusion in patients with poor-grade SAH.


2008 ◽  
Vol 109 (6) ◽  
pp. 1155-1164 ◽  
Author(s):  
Amanda M. Murphy ◽  
Anargyros Xenocostas ◽  
Pria Pakkiri ◽  
Ting-Yim Lee

Object The authors investigated the hemodynamic effects of recombinant human erythropoietin (rhEPO) after subarachnoid hemorrhage (SAH) in rabbits. Methods The authors used male New Zealand White rabbits in this study divided into the following groups: SAH plus saline (16 rabbits), SAH plus low-dose rhEPO (16 rabbits; 1500 IU/kg on Day 0 and 500 IU/kg on Days 2 and 4), SAH plus high-dose rhEPO (10 rabbits; 1500 IU/kg on Days 0, 2, 4, and 6), and sham (6 rabbits). Computed tomography perfusion studies and CT angiography were performed for 1 hour after SAH on Day 0, and once each on Days 2, 4, 7, 9, and 16 after SAH. Assessments of neurological function and tissue histology were also performed. Results The mortality rate was significantly lower after rhEPO treatment (12%) than after saline treatment (44%) (p < 0.05). Neurological outcomes in the low-dose and high-dose rhEPO groups were better than in the saline group after SAH (p < 0.05), and the cerebral blood flow in the high-dose rhEPO group was greater than that in the saline group (p < 0.05). The mean transit time was significantly lower on Days 2 and 4 in the low-dose and high-dose rhEPO groups than in the saline group, but increased significantly on Day 7 in both groups (p < 0.05). The hematocrit increased significantly from baseline values in the high-dose and low-dose rhEPO groups on Days 4 and 7, respectively (p < 0.05). Conclusions Treatment with rhEPO after experimental SAH is associated with improved cerebral blood flow and microcirculatory flow as reflected by lower mean transit times. Improved tissue perfusion correlated with reduced mortality and improved neurological outcomes. Further investigation of the impact of increasing hematocrit on hemodynamic changes is needed.


Sign in / Sign up

Export Citation Format

Share Document