semiquantitative analysis
Recently Published Documents


TOTAL DOCUMENTS

238
(FIVE YEARS 27)

H-INDEX

29
(FIVE YEARS 2)

Diagnostics ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2227
Author(s):  
Paul Bosch ◽  
Frank F.A. IJpma ◽  
Geertje A.M. Govaert ◽  
Inge H.F. Reininga ◽  
Jean-Paul P.M. de Vries ◽  
...  

Purpose: White blood cell (WBC) scintigraphy is considered the gold-standard nuclear imaging technique for diagnosing fracture-related infection (FRI). Correct interpretation of WBC scans in FRI is important since a false positive or false negative diagnosis has major consequences for the patient in terms of clinical decision-making. The European Association of Nuclear Medicine (EANM) guideline for correct analysis and interpretation of WBC scans recommends semiquantitative analysis of visually equivocal scans. Therefore, this study aims to assess the diagnostic accuracy of semiquantitative analysis of visually equivocal WBC scans for diagnosing FRI. Methods: A retrospective single-center study was performed in consecutive patients who received WBC scintigraphy in the diagnostic work-up for FRI between February 2012 and January 2017. All the visually equivocal scans were analysed using semiquantitative analysis by comparing leukocyte uptake in the manually selected suspected infection focus with the contralateral bone marrow (L/R ratio). Cut-off points for a ‘positive’ scan result of >0%, >10% and >20% leukocyte increase between the early and late scans were used in separate analyses. The discriminative ability was quantified by calculating the sensitivity, specificity and diagnostic accuracy. Results: In total, 153 WBC scans were eligible for inclusion. After visual assessment of all the scans, 28 visually equivocal scans were included. Dichotomization of the ratios using the cut-off of >0% resulted in a sensitivity of 30%, a specificity of 45% and a diagnostic accuracy of 40%. The >10% cut-off point resulted in a sensitivity of 18%, a specificity of 82% and a diagnostic accuracy of 66%. The >20% cut-off point resulted in a sensitivity of 0%, a specificity of 89% and a diagnostic accuracy of 67%. Conclusion: Semiquantitative analysis of visually equivocal WBC scans is insufficient for correctly diagnosing FRI.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Tzu-Wei Kuan ◽  
Chih-Chieh Shen ◽  
Jyh-Cheng Chen ◽  
Kao-Yin Tu ◽  
Chin-Ho Tsao ◽  
...  

2021 ◽  
Vol 54 (4) ◽  
pp. 232-237
Author(s):  
Julieta E. Arena ◽  
Leandro Urrutia ◽  
Germán Falasco ◽  
Magdalena Ponce de Leon ◽  
Silvia Vazquez ◽  
...  

Abstract Objective: To determine whether technetium-99m-labeled tropane derivative single-photon emission computed tomography (99mTc-TRODAT-1 SPECT) provides results comparable to those of the less widely available, less accessible tool fluorine-18-labeled fluorodopa positron-emission tomography (18F-FDOPA PET) in the setting of a movement disorders clinic. Materials and Methods: In this prospective pilot study, eight subjects with a clinical diagnosis of Parkinson’s disease were randomly selected from among patients under treatment at a movement disorders clinic and submitted to 99mTc-TRODAT-1 SPECT and 18F-FDOPA PET. The results were read by two experienced observers, and a semiquantitative analysis was performed. Results: The visual and semiquantitative analyses were concordant for all studies, showing that radiotracer uptake in the contralateral striatum on the most affected side was lower when 99mTc-TRODAT-1 SPECT was employed. The semiquantitative analysis demonstrated a significant correlation between 18F-FDOPA PET and 99mTc-TRODAT-1 SPECT (r = 0.73; p < 0.01). Conclusion: It appears that 99mTc-TRODAT-1 SPECT is a valid option for the study of dopaminergic function in a clinical setting.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Attapon Jantarato ◽  
Sira Vachatimanont ◽  
Natphimol Boonkawin ◽  
Sukanya Yaset ◽  
Anchisa Kunawudhi ◽  
...  

Background. Some studies have reported the effectiveness of [18F]PI-2620 as an effective tau-binding radiotracer; however, few reports have applied semiquantitative analysis to the tracer. Therefore, this study’s aim was to perform a semiquantitative analysis of [18F]PI-2620 in individuals with normal cognition and patients with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Methods. Twenty-six cognitively normal (CN) subjects, 7 patients with AD, and 36 patients with MCI were enrolled. A dynamic positron emission tomography (PET) scan was performed 30–75 min postinjection. PET and T1-weighted magnetic resonance imaging scans were coregistered. The standardized uptake value ratio (SUVr) was used for semiquantitative analysis. The P-Mod software was applied to create volumes of interest. The ANOVA and post hoc Tukey HSD were used for statistical analysis. Results. In the AD group, the occipital lobe had a significantly higher mean SUVr ( 1.46 ± 0.57 ) than in the CN and MCI groups. Compared with the CN group, the AD group showed significantly higher mean SUVr in the fusiform gyrus ( 1.06 ± 0.09 vs. 1.49 ± 0.86 ), inferior temporal ( 1.07 ± 0.07 vs. 1.46 ± 0.08 ), parietal lobe, lingual gyrus, and precuneus regions. Similarly, the AD group demonstrated a higher mean SUVr than the MCI group in the precuneus, lingual, inferior temporal, fusiform, supramarginal, orbitofrontal, and superior temporal regions. The remaining observed regions, including the striatum, basal ganglia, thalamus, and white matter, showed a low SUVr across all groups with no statistically significant differences. Conclusion. A significantly higher mean SUVr of [18F]PI-2620 was observed in the AD group; a significant area of the brain in the AD group demonstrated tau protein deposit in concordance with Braak Stages III–V, providing useful information to differentiate AD from CN and MCI. Moreover, the low SUVr in the deep striatum and thalamus could be useful for excluding primary tauopathies.


Author(s):  
Yuta Takaichi ◽  
James K Chambers ◽  
Yasuhisa Ano ◽  
Akihiko Takashima ◽  
Hiroyuki Nakayama ◽  
...  

Abstract The simultaneous accumulation of multiple pathological proteins, such as hyperphosphorylated tau (hp-tau) and phosphorylated α-synuclein (p-αSyn), has been reported in the brains of patients with various neurodegenerative diseases. We previously demonstrated that hp-tau-dependent p-αSyn accumulation was associated with the activation of GSK-3β in the brains of P301L tau transgenic mice. To confirm the effects of another mutant tau on p-αSyn accumulation in vivo, we herein examined the brains of PS19 mice that overexpress human P301S mutant tau. Immunohistochemically, hp-tau and p-αSyn aggregates were detected in the same neuronal cells in the cerebrum and brain stem of aged PS19 mice. A semiquantitative analysis showed a positive correlation between hp-tau and p-αSyn accumulation. Furthermore, an activated form of GSK-3β was detected within cells containing both hp-tau and p-αSyn aggregates in PS19 mice. Western blotting showed a decrease in inactivated PP2A levels in PS19 mice. The present results suggest that the overexpression of human P301S mutant tau induces p-αSyn accumulation that is accompanied by not only GSK-3β, but also PP2A activation in PS19 mice, and highlight the synergic effects between tau and αSyn in the pathophysiology of neurodegenerative diseases that show the codeposition of tau and αSyn.


2021 ◽  
pp. e200172
Author(s):  
Leilei Zhou ◽  
Xindao Yin ◽  
Tao Zhang ◽  
Yuan Feng ◽  
Ying Zhao ◽  
...  

Author(s):  
Si Huang ◽  
Frank W. Claassen ◽  
Teris A. van Beek ◽  
Bo Chen ◽  
Jianguo Zeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document