experimental subarachnoid hemorrhage
Recently Published Documents


TOTAL DOCUMENTS

554
(FIVE YEARS 67)

H-INDEX

46
(FIVE YEARS 6)

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Yongfa Zhang ◽  
Baocheng Gao ◽  
Jingsong Ouyang ◽  
Bai Tai ◽  
Shuai Zhou

Subarachnoid hemorrhage (SAH) is a kind of severe hemorrhagic stroke, and early brain injury acted as one of the main causes of death and delayed neurological deficit in patients with subarachnoid hemorrhage. In this process, the function and structural integrity of the blood-brain barrier play an important role. In this study, we have observed whether the apolipoprotein E (apoE) mimetic peptide, COG133, can alleviate early brain injury after subarachnoid hemorrhage. For this purpose, an experimental subarachnoid hemorrhage model was constructed in mice and treated by intravenous injection of COG133 at a dosage of 1 mg/kg. Then, the function and integrity of the blood-brain barrier were detected, and the pyroptosis level of the neuron was determined. The results showed that COG133 could protect blood-brain barrier function and structure integrity, reduce early brain injury, and ameliorate neurological function after subarachnoid hemorrhage. In terms of molecular mechanism, COG133 inhibits blood-brain barrier destruction through the proinflammatory CypA-NF-κB-MMP9 pathway and reduces neuronal pyroptosis by inhibiting NLRP3 inflammasome activation. In conclusion, this study demonstrated that apoE-mimetic peptide, COG133, can play a neuroprotective role by protecting blood-brain barrier function and inhibiting brain cell pyroptosis to reduce early brain injury after subarachnoid hemorrhage.


Stroke ◽  
2021 ◽  
Author(s):  
Hanhan Liu ◽  
Julian Schwarting ◽  
Nicole Angela Terpolilli ◽  
Kathrin Nehrkorn ◽  
Nikolaus Plesnila

Background and Purpose: Subarachnoid hemorrhage (SAH) is associated with acute and delayed cerebral ischemia resulting in high acute mortality and severe chronic neurological deficits. Spasms of the pial and intraparenchymal microcirculation (microvasospasms) contribute to acute cerebral ischemia after SAH; however, the underlying mechanisms remain unknown. We hypothesize that free iron (Fe 3+ ) released from hemolytic red blood cells into the subarachnoid space may be involved in microvasospasms formation. Methods: Male C57BL/6 mice (n=8/group) received 200 mg/kg of the iron scavenger deferoxamine or vehicle intravenously and were then subjected to SAH by filament perforation. Microvasospasms of pial and intraparenchymal vessels were imaged three hours after SAH by in vivo 2-photon microscopy. Results: Microvasospasms occurred in all investigated vessel categories down to the capillary level. Deferoxamine significantly reduced the number of microvasospasms after experimental SAH. The effect was almost exclusively observed in larger pial arterioles (>30 µm) covered with blood. Conclusions: These results provide proof-of-principle evidence that Fe 3+ is involved in the formation of arteriolar microvasospasms after SAH and that arteriolar and capillary microvasospasms are triggered by different mechanisms. Deciphering the mechanisms of Fe 3+ -induced microvasospasms may result in novel therapeutic strategies for SAH patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xinyan Wu ◽  
Hanhai Zeng ◽  
Chaoran Xu ◽  
Huaijun Chen ◽  
Linfeng Fan ◽  
...  

Neuroinflammation is a key process in the pathogenesis of subarachnoid hemorrhage (SAH) and contributes to poor outcome in patients. The purpose of this study is to explore the effect of triggering receptor expressed on myeloid cells 1 (TREM1) in the SAH, as well as its potential mechanism. In our study, plasma levels of soluble TREM1 was increased significantly after SAH and correlated to SAH severity and serum C-reactiveprotein. TREM1 inhibitory peptide LP17 alleviated the neurological deficits, attenuated brain water content, and reduced neuronal damage after SAH. Meanwhile, TREM1 inhibitory peptide decreased neuroinflammation (evidenced by the decreased levels of markers including IL-6, IL-1β, TNF-α) by attenuating proinflammatory subtype transition of microglia (evidenced by the decreased levels of markers including CD68, CD16, CD86) and decreasing the formation of neutrophil extracellular traps (evidenced by the decreased levels of markers including CitH3, MPO, and NE). Further mechanistic study identified that TREM1 can activate downstream proinflammatory pathways through interacting with spleen tyrosine kinase (SYK). In conclusion, inhibition of TREM1 alleviates neuroinflammation by attenuating proinflammatory subtype transition of microglia and decreasing the formation of neutrophil extracellular traps through interacting with SYK after SAH. TREM1 may be a a promising therapeutic target for SAH.


Sign in / Sign up

Export Citation Format

Share Document