scholarly journals An Endogenously Produced Fragment of Cardiac Myosin-Binding Protein C Is Pathogenic and Can Lead to Heart Failure

2013 ◽  
Vol 113 (5) ◽  
pp. 553-561 ◽  
Author(s):  
Md. Abdur Razzaque ◽  
Manish Gupta ◽  
Hanna Osinska ◽  
James Gulick ◽  
Burns C. Blaxall ◽  
...  

Rationale : A stable 40-kDa fragment is produced from cardiac myosin-binding protein C when the heart is stressed using a stimulus, such as ischemia-reperfusion injury. Elevated levels of the fragment can be detected in the diseased mouse and human heart, but its ability to interfere with normal cardiac function in the intact animal is unexplored. Objective : To understand the potential pathogenicity of the 40-kDa fragment in vivo and to investigate the molecular pathways that could be targeted for potential therapeutic intervention. Methods and Results : We generated cardiac myocyte–specific transgenic mice using a Tet-Off inducible system to permit controlled expression of the 40-kDa fragment in cardiomyocytes. When expression of the 40-kDa protein is induced by crossing the responder animals with tetracycline transactivator mice under conditions in which substantial quantities approximating those observed in diseased hearts are reached, the double-transgenic mice subsequently experience development of sarcomere dysgenesis and altered cardiac geometry, and the heart fails between 12 and 17 weeks of age. The induced double-transgenic mice had development of cardiac hypertrophy with myofibrillar disarray and fibrosis, in addition to activation of pathogenic MEK–ERK pathways. Inhibition of MEK–ERK signaling was achieved by injection of the mitogen-activated protein kinase (MAPK)/ERK inhibitor U0126. The drug effectively improved cardiac function, normalized heart size, and increased probability of survival. Conclusions : These results suggest that the 40-kDa cardiac myosin-binding protein C fragment, which is produced at elevated levels during human cardiac disease, is a pathogenic fragment that is sufficient to cause hypertrophic cardiomyopathy and heart failure.

2016 ◽  
Vol 30 (5) ◽  
pp. 1849-1864 ◽  
Author(s):  
Konstantina Stathopoulou ◽  
Ilka Wittig ◽  
Juliana Heidler ◽  
Angelika Piasecki ◽  
Florian Richter ◽  
...  

2016 ◽  
Vol 38 (2) ◽  
pp. 418-424 ◽  
Author(s):  
Doaa El Amrousy ◽  
Hossam Hodeib ◽  
Ghada Suliman ◽  
Nahed Hablas ◽  
Eman Ramadan Salama ◽  
...  

2007 ◽  
Vol 43 (2) ◽  
pp. 223-229 ◽  
Author(s):  
Ali El-Armouche ◽  
Lutz Pohlmann ◽  
Saskia Schlossarek ◽  
Jutta Starbatty ◽  
Yung-Hsin Yeh ◽  
...  

2018 ◽  
Vol 115 (19) ◽  
pp. E4386-E4395 ◽  
Author(s):  
Sho Matsuyama ◽  
Yohko Kage ◽  
Noriko Fujimoto ◽  
Tomoki Ushijima ◽  
Toshihiro Tsuruda ◽  
...  

Mutations in cardiac myosin-binding protein C (cMyBP-C) are a major cause of familial hypertrophic cardiomyopathy. Although cMyBP-C has been considered to regulate the cardiac function via cross-bridge arrangement at the C-zone of the myosin-containing A-band, the mechanism by which cMyBP-C functions remains unclear. We identified formin Fhod3, an actin organizer essential for the formation and maintenance of cardiac sarcomeres, as a cMyBP-C–binding protein. The cardiac-specific N-terminal Ig-like domain of cMyBP-C directly interacts with the cardiac-specific N-terminal region of Fhod3. The interaction seems to direct the localization of Fhod3 to the C-zone, since a noncardiac Fhod3 variant lacking the cMyBP-C–binding region failed to localize to the C-zone. Conversely, the cardiac variant of Fhod3 failed to localize to the C-zone in the cMyBP-C–null mice, which display a phenotype of hypertrophic cardiomyopathy. The cardiomyopathic phenotype of cMyBP-C–null mice was further exacerbated by Fhod3 overexpression with a defect of sarcomere integrity, whereas that was partially ameliorated by a reduction in the Fhod3 protein levels, suggesting that Fhod3 has a deleterious effect on cardiac function under cMyBP-C–null conditions where Fhod3 is aberrantly mislocalized. Together, these findings suggest the possibility that Fhod3 contributes to the pathogenesis of cMyBP-C–related cardiomyopathy and that Fhod3 is critically involved in cMyBP-C–mediated regulation of cardiac function via direct interaction.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Thomas L Lynch ◽  
Diederik W Kuster ◽  
David Barefield ◽  
Mayandi Sivaguru ◽  
Michael J Previs ◽  
...  

Rationale: Cardiac myosin binding protein-C (cMyBP-C) is a trans-filament protein that has been shown to regulate cardiac function via its amino terminal (N’) regions. However, it is unknown whether the first 271 residues (C0-C1f region) are necessary to regulate contractile function in vivo. Hypothesis: The N’-region of cMyBP-C is critical for proper cardiac function in vivo. Methods and Results: Transgenic mice with approximately 80% expression of mutant truncated cMyBP-C missing C0-C1f (cMyBP-C 110kDa ), compared to endogenous cMyBP-C, were generated and characterized at 3-months of age. cMyBP-C 110kDa hearts had significantly elevated heart weight/body weight ratio, fibrosis, nuclear area and collagen content compared to hearts from non-transgenic (NTG) littermates. Electron microscopic analysis revealed normal sarcomere structure in cMyBP-C 110kDa hearts but with apparently weaker cMyBP-C stripes. Furthermore, the ability of cMyBP-C to slow actin-filament sliding within the C-zone of native thick filaments isolated from NTG hearts was lost on thick filaments from cMyBP-C 110kDa hearts. Short axis M-mode echocardiography revealed a significant increase in left ventricular (LV) internal diameter during diastole in cMyBP-C 110kDa hearts. Importantly, cMyBP-C 110kDa hearts displayed a significant reduction in fractional shortening compared to hearts from NTG littermates. We further observed a decrease in the thickness of the LV interventricular septum and free wall during systole in cMyBP-C 110kDa hearts. Strain analysis using images acquired from ECG-Gated Kilohertz Visualization identified a significant deficit in global longitudinal strain in cMyBP-C 110kDa hearts compared to NTG hearts. Conclusion: The N’-region of cMyBP-C is indispensable for maintaining normal cardiac morphology and function and loss of this region promotes contractile dysfunction both at the molecular and tissue levels.


Sign in / Sign up

Export Citation Format

Share Document