Anodal Occipital Transcranial Direct Current Stimulation Enhances Perceived Visual Size Illusions

2020 ◽  
pp. 1-8
Author(s):  
Anqi Wang ◽  
Lihong Chen ◽  
Yi Jiang

Human early visual cortex has long been suggested to play a crucial role in context-dependent visual size perception through either lateral interaction or feedback projections from higher to lower visual areas. We investigated the causal contribution of early visual cortex to context-dependent visual size perception using the technique of transcranial direct current stimulation and two well-known size illusions (i.e., the Ebbinghaus and Ponzo illusions) and further elucidated the underlying mechanism that mediates the effect of transcranial direct current stimulation over early visual cortex. The results showed that the magnitudes of both size illusions were significantly increased by anodal stimulation relative to sham stimulation but left unaltered by cathodal stimulation. Moreover, the anodal effect persisted even when the central target and surrounding inducers of the Ebbinghaus configuration were presented to different eyes, with the effect lasting no more than 15 min. These findings provide compelling evidence that anodal occipital stimulation enhances the perceived visual size illusions, which is possibly mediated by weakening the suppressive function of the feedback connections from higher to lower visual areas. Moreover, the current study provides further support for the causal role of early visual cortex in the neural processing of context-dependent visual size perception.

2021 ◽  
Vol 11 (2) ◽  
pp. 270
Author(s):  
Angelito Braulio F. de Venecia ◽  
Shane M. Fresnoza

Proliferative diabetic retinopathy (PDR) is a severe complication of diabetes. PDR-related retinal hemorrhages often lead to severe vision loss. The main goals of management are to prevent visual impairment progression and improve residual vision. We explored the potential of transcranial direct current stimulation (tDCS) to enhance residual vision. tDCS applied to the primary visual cortex (V1) may improve visual input processing from PDR patients’ retinas. Eleven PDR patients received cathodal tDCS stimulation of V1 (1 mA for 10 min), and another eleven patients received sham stimulation (1 mA for 30 s). Visual acuity (logarithm of the minimum angle of resolution (LogMAR) scores) and number acuity (reaction times (RTs) and accuracy rates (ARs)) were measured before and immediately after stimulation. The LogMAR scores and the RTs of patients who received cathodal tDCS decreased significantly after stimulation. Cathodal tDCS has no significant effect on ARs. There were no significant changes in the LogMAR scores, RTs, and ARs of PDR patients who received sham stimulation. The results are compatible with our proposal that neuronal noise aggravates impaired visual function in PDR. The therapeutic effect indicates the potential of tDCS as a safe and effective vision rehabilitation tool for PDR patients.


2008 ◽  
Vol 25 (1) ◽  
pp. 77-81 ◽  
Author(s):  
LEILA CHAIEB ◽  
ANDREA ANTAL ◽  
WALTER PAULUS

Transcranial direct current stimulation (tDCS) is a non-invasive method of modulating levels of cortical excitability. In this study, data gathered over a number of previously conducted experiments before and after tDCS, has been re-analyzed to investigate correlations between sex differences with respect to neuroplastic effects. Visual evoked potentials (VEPs), phosphene thresholds (PTs), and contrast sensitivity measurements (CSs) are used as indicators of the excitability of the primary visual cortex. The data revealed that cathodally induced excitability effects 10 min post stimulation with tDCS, showed no significant difference between genders. However, stimulation in the anodal direction revealed sex-specific effects: in women, anodal stimulation heightened cortical excitability significantly when compared to the age-matched male subject group. There was no significant difference between male and female subjects immediately after stimulation. These results indicate that sex differences exist within the visual cortex of humans, and may be subject to the influences of modulatory neurotransmitters or gonadal hormones which mirror short-term neuroplastic effects.


Sign in / Sign up

Export Citation Format

Share Document