Nonlinear Dynamic Analysis of an Elliptic Gas Bearing System via a Hybrid Numerical Method

2012 ◽  
Vol 9 (1) ◽  
pp. 896-902
Author(s):  
Cheng-Chi Wang
2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Cheng-Chi Wang ◽  
Her-Terng Yau ◽  
Chi-Chang Wang

This paper studies the nonlinear dynamic behaviors including chaotic, subharmonic, and quasi-periodic motions of a rigid rotor supported by floating ring gas bearing (FRGB) system. A hybrid numerical method combining the differential transformation method and the finite difference method used to calculate pressure distribution of FRGB system and rotor orbits. The results obtained for the orbits of the rotor center are in good agreement with those obtained using the traditional finite difference approach. Moreover, the hybrid method avoids the numerical instability problem suffered by the finite difference scheme at low values of the rotor mass and computational time-step. Moreover, power spectra, Poincaré maps, bifurcation diagrams and Lyapunov exponents are applied to examine the nonlinear dynamic response of the FRGB system over representative ranges of the rotor mass and bearing number, respectively. The results presented summarize the changes which take place in the dynamic behavior of the FRGB system as the rotor mass and bearing number are increased and therefore provide a useful guideline for the bearing system.


2019 ◽  
Vol 33 (3) ◽  
pp. 1033-1043
Author(s):  
Zhilong Huang ◽  
Zhongchao Zhang ◽  
Yiming Li ◽  
Guiqiu Song ◽  
Yang He

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Cheng-Chi Wang ◽  
Chin-Chia Liu ◽  
Chi-Chang Wang

This paper studies the chaotic and nonlinear dynamic behaviors of a rigid rotor supported by externally pressurized double air films (EPDAF) bearing system. A hybrid numerical method combining the differential transformation method and the finite difference method is used to calculate pressure distribution of EPDAF bearing system and bifurcation phenomenon of rotor center orbits. The results obtained for the orbits of the rotor center are in good agreement with those obtained using the traditional finite difference approach. The results presented summarize the changes which take place in the dynamic behavior of the EPDAF bearing system as the rotor mass and bearing number are increased and therefore provide a useful guideline for the bearing system.


2018 ◽  
Vol 94 (2) ◽  
pp. 1391-1408 ◽  
Author(s):  
Yihua Wu ◽  
Kai Feng ◽  
Yun Zhang ◽  
Wanhui Liu ◽  
Wenjun Li

Sign in / Sign up

Export Citation Format

Share Document