cutting head
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 53)

H-INDEX

9
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Xin Jin ◽  
Guochao Zhao ◽  
Lijuan Zhao ◽  
Guocong Lin

Abstract The cutting head is the core working mechanism of the roadheader for coal-rock materials cutting. The efficient and high performance design of cutting head is the key to improve the road head digging and mining technology. In this paper, based on cutting head design theory and virtual prototype technology, we propose a computer-aided structure design and performance optimization method for cutting head. We compile the calculation code and realize the reading and storing of relevant data through Excel. In particular, to obtain more realistic cutting performance data of the cutting head, we construct a coupling model of cutting head cutting rock wall based on virtual prototype technology, and then establish a database matching structural parameters, working parameters, coal-rock properties and cutting performance through extensive simulations. Based on the method, we complete the design of EBZ220 roadheader cutting head. We show that our method can realize the fast and efficient design of cutting head, and the designed cutting head has good working performance.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 295
Author(s):  
Piotr Cheluszka ◽  
Amadeus Jagieła-Zając

For effective mining, it is essential to ensure that the picks are positioned correctly on the working unit of a mining machine. This is due to the fact that the design of roadheader cutting heads/drums using computer-aided tools is based on the operating conditions of the roadheader/shearer/milling machine. The geometry of the cutting head is optimized for selected criteria by simulating the mining process using a computer. The reclaimed cutting head bodies that are utilized in production are manufactured again in the overhaul process. Ensuring that the dimensions of the cutting head bodies match the rated dimensions is labor-intensive and involves high production costs. For dimensional deviations of the cutting head bodies, it is necessary to control the position of the pick holders relative to the cutting head side surface in real time during robotic-assisted assembly. This article discusses the possibility of utilizing a stereovision system for calculating the distance between the pick holder base and the roadheader cutting head side surface at the point where the pick holder is mounted. The proposed measurement method was tested on a robotic measurement station constructed for the purpose of the study. A mathematical measurement model and procedures that allow automatic positioning of the camera system to the photographed objects, as well as acquisition and analysis of the measurement images, were developed. The proposed method was validated by using it for measuring the position of the pick holders relative to the side surface of the working unit of a mining excavating machine, focusing on its application in robotic technology. The article also includes the results observed in laboratory tests performed on the developed measurement method with an aim of determining its suitability for the metrology task under consideration.


2021 ◽  

Abstract This paper presents an experimental study of abrasive waterjet turning of an extrusion aluminum alloy (AlMg0,7Si). The aim of the paper is to determine differences of two methods from the point of view of machined surface quality and the depth of penetration, i.e., the diameter of the parts after the turning process. During the experiments, the traverse speed of the cutting head and the rotation of the turned parts were changed, other parameters, like pressure of the water, abrasive mass flow rate were kept constant. Diameter and some surface roughness parameters of the test parts were measured after the machining. On the base of experimental results, advantages, and disadvantages of two methods are explained in the paper.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7542
Author(s):  
Miroslav Müller ◽  
Viktor Kolář ◽  
Jan Šulc ◽  
Rajesh Kumar Mishra ◽  
Monika Hromasová ◽  
...  

The article focuses on the machining of polymeric materials polypropylene (PP) and un-plasticized poly vinyl chloride (PVC-U) after surface treatment with polyurethane and acrylate coatings using waterjet technology. Two types of waterjet technologies, abrasive waterjet (AWJ) and waterjet without abrasive (WJ), were used. The kerf width and its taper angle, at the inlet and outlet of the waterjet from the workpiece, were evaluated. Significant differences between AWJ and WJ technology were found. WJ technology proved to be less effective due to the creation of a nonuniform cutting gap and significant burrs. AWJ technology was shown to be more efficient, i.e., more uniform cuts were achieved compared to WJ technology, especially at a cutting head traverse speed of 50 mm·min−1. The most uniform kerf width or taper angle was achieved for PP + MOBIHEL (0.09°). The materials (PP and PVC-U) with the POLURAN coating had higher values of the taper angle of the cutting gap than the material with the MOBIHEL coating at all cutting head traverse speeds. The SEM results showed that the inappropriate cutting head traverse speed and the associated WJ technology resulted in significant destruction of the material to be cut on the underside of the cut. Delamination of the POLURAN and MOBIHEL coatings from the base material PP and PVC-U was not demonstrated by SEM analysis over the range of cutting head traverse speeds, i.e., 50 to 1000 mm·min−1.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7032
Author(s):  
Lucie Gembalová ◽  
Libor M. Hlaváč ◽  
Sławomir Spadło ◽  
Vladan Geryk ◽  
Luka Oros

The aim of the research was to investigate changes of abrasive grains on metals observing the kerf walls produced by the Abrasive Water Jet (AWJ). The microscopy observations of the sidewalls of kerfs cut by the AWJ in several metal materials with an identical thickness of 10 mm are presented. The observed sizes of abrasive grains were compared with the results of research aimed at the disintegration of the abrasive grains during the mixing process in the cutting head during the injection AWJ creation. Some correlations were discovered and verified. The kerf walls observations show the size of material disintegration caused by the individual abrasive grains and also indicate the size of these grains. One part of this short communication is devoted to a critical look at some of the conclusions of the older published studies, namely regarding the correlation of the number of interacting particles with the acoustic emissions measured on cut materials. The discussion is aimed at the abrasive grain size after the mixing process and changes of this size in the interaction with the target material.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260183
Author(s):  
Mengqi Zhang ◽  
Xianguo Yan ◽  
Guoqiang Qin

This paper proposes a cutting head optimization method based on meshing the spatial position of the picks. According to the expanded shape of the spatial mesh composed of four adjacent picks on the plane, a standard mesh shape analysis method can be established with mesh skewness, mesh symmetry, and mesh area ratio as the indicators. The traversal algorithm is used to calculate the theoretical meshing rate, pick rotation coefficient, and the variation of cutting load for the longitudinal cutting head with 2, 3, and 4 helices. The results show that the 3-helix longitudinal cutting head has better performance. By using the traversal result with maximum theoretical meshing rate as the design parameter, the longitudinal cutting head CH51 with 51 picks was designed and analyzed. The prediction model of pick consumption is established based on cutting speed, direct rock cutting volume of each pick, pick rotation coefficient, uniaxial compressive strength, and CERCHAR abrasivity index. And the rock with normal distribution characteristics of Uniaxial Compressive Strength is used for the specific energy calculating. The artificial rock wall cutting test results show that the reduction in height loss suppresses the increase in pick equivalent loss caused by the increase in mass loss, and the pick consumption in this test is only 0.037–0.054 picks/m3. In addition, the correlation between the actual pick consumption and the prediction model, and the correlation between the actual cutting specific energy and the theoretical calculation value are also analyzed. The research results show that the pick arrangement design method based on meshing pick tip spatial position can effectively reduce pick consumption and improve the rock cutting performance.


2021 ◽  
Vol 2021 (4) ◽  
pp. 4847-4852
Author(s):  
GERHARD MITAL ◽  
◽  
EMIL SPISAK ◽  
PETER MULIDRAN ◽  
LUBOS KASCAK ◽  
...  

The article deals with contact and non-contact evaluation of surface roughness created by water jet cutting technology (AWJ). Non-contact surface measurement was performed using an LPM laser profilometer. The values measured by the laser profilometry method were compared with the values measured by the contact method, the Mitutoyo SJ 400 roughness meter. Six samples were produced. Three in stainless steel and three in structural steel. In order to achieve a different surface topography, different feed rates of the cutting head were used on the samples, which was reflected in the quality of the resulting surface. The evaluated parameters were the average arithmetic deviation of the assessed profile and the largest height of the profile inequality.


Author(s):  
Tingyu Cheng ◽  
Bu Li ◽  
Yang Zhang ◽  
Yunzhi Li ◽  
Charles Ramey ◽  
...  

Human environments are filled with large open spaces that are separated by structures like walls, facades, glass windows, etc. Most often, these structures are largely passive offering little to no interactivity. In this paper, we present Duco, a large-scale electronics fabrication robot that enables room-scale & building-scale circuitry to add interactivity to vertical everyday surfaces. Duco negates the need for any human intervention by leveraging a hanging robotic system that automatically sketches multi-layered circuity to enable novel large-scale interfaces. The key idea behind Duco is that it achieves single-layer or multi-layer circuit fabrication on 2D surfaces as well as 2D cutouts that can be assembled into 3D objects by loading various functional inks (e.g., conductive, dielectric, or cleaning) to the wall-hanging drawing robot, as well as employing an optional laser cutting head as a cutting tool. Our technical evaluation shows that Duco's mechanical system works reliably on various surface materials with a wide range of roughness and surface morphologies. The system achieves superior mechanical tolerances (0.1mm XY axis resolution and 1mm smallest feature size). We demonstrate our system with five application examples, including an interactive piano, an IoT coffee maker controller, an FM energy-harvester printed on a large glass window, a human-scale touch sensor and a 3D interactive lamp.


2021 ◽  
Vol 4 (1) ◽  
pp. 281-289
Author(s):  
Witold Biały ◽  
Jiri Fries ◽  
Greg Galecki

Abstract The paper presents a method for measuring and recording the forces involved in the coal cutting process. Moreover, a method for visualization of all forces involved in the cutting process was described. In the following part, the construction and principle of operation of a device for determination of forces involved in the cutting process (coal mining), referred to by the author as POU-BW/01-WAP, are presented. Resistance extensometry was used to measure the forces. This is the only device in the world that determines two of three force components that take part in the cutting process. For this purpose, two independent measuring blocks were used, which are strain gauges of force: cutting (Fs) and knife pressure (Fd). In order to register these forces, a real mining knife used in longwall shearer drums was applied – i.e. tangential-rotary. The equipment has the ATEX certificate allowing for operation in real conditions as a device intended for use in potentially explosive atmospheres – in accordance with the directive 94/9/EC. It has received many awards at world fairs for inventions and innovative solutions.


Machines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 162
Author(s):  
Matteo Bottin ◽  
Giulio Cipriani ◽  
Domenico Tommasino ◽  
Alberto Doria

The vibrations of a Cartesian cutting machine caused by the pneumatic tool are studied with a sub-system approach. The cutting head is modeled as an equivalent robot arm which is able to mimic the measured resonances. The Cartesian structure is modeled according to the mode superposition approach. A global analytical model is obtained coupling the aforementioned models, and is solved in MATLAB. The full model is able to predict the variations in the response of the machine to tool excitation that are caused by the motion of the head along the rails of the Cartesian structure. Comparisons with experimental results are made.


Sign in / Sign up

Export Citation Format

Share Document