The TGA Stop Codon and the Phylogeny of the Selenocysteine Pathway

2003 ◽  
Vol 2 (4) ◽  
pp. 127-138 ◽  
Author(s):  
Trudy M. Wassenaar ◽  
Richard J. Meinersmann
Keyword(s):  
2013 ◽  
Vol 8 (S 01) ◽  
Author(s):  
J Breitfeld ◽  
JT Heiker ◽  
Y Böttcher ◽  
D Schleinitz ◽  
A Tönjes ◽  
...  

1990 ◽  
Vol 64 (02) ◽  
pp. 239-244 ◽  
Author(s):  
P H Reitsma ◽  
W te Lintel Hekkert ◽  
E Koenhen ◽  
P A van der Velden ◽  
C F Allaart ◽  
...  

SummaryScreening of restriction erzyme digested DNA from normal and protein C deficient individuals with a variety of probes derived from the protein C locus has revealed the existence of two neutral MspI polymorphism. One polymorphism (MI), which is located ≈7 kb upstream of the protein C gene, has allelic frequencies of 69 and 31%, and was used to exclude extensive gene deletions as a likely cause of type I protein C deficiency in 50% of cases in a panel of 22 families. Furtherrnore, the same polymorphism has been used in 5 doubly affected individuals establishing compound heterozygosity in 3 of these.The second, intragenic, polymorphism (MII) has allelic frequencies of 99 and 1% in the normal population. The frequency of the rare allele of this RFLP was with 7% much higher in a panel of 22 Dutch families with protein C deficiency. Interestingly, in all three probands that were heterozygous for MII the rare allele of MII coincided with a point mutation that leads to a stop codon in amino acid position 306 of the protein C coding sequence. This mutation may account for 14% of the protein C deficient individuals in The Netherlands.


1996 ◽  
Vol 75 (06) ◽  
pp. 870-876 ◽  
Author(s):  
José Manuel Soria ◽  
Lutz-Peter Berg ◽  
Jordi Fontcuberta ◽  
Vijay V Kakkar ◽  
Xavier Estivill ◽  
...  

SummaryNonsense mutations, deletions and splice site mutations are a common cause of type I protein C deficiency. Either directly or indirectly by altering the reading frame, these' lesions generate or may generate premature stop codons and could therefore be expected to result in premature termination of translation. In this study, the possibility that such mutations could instead exert their pathological effects at an earlier stage in the expression pathway, through “allelic exclusion” at the RNA level, was investigated. Protein C (PROC) mRNA was analysed in seven Spanish type I protein C deficient patients heterozygous for two nonsense mutations, a 7bp deletion, a 2bp insertion and three splice site mutations. Ectopic RNA transcripts from patient and control lymphocytes were analysed by RT-PCR and direct sequencing of amplified PROC cDNA fragments. The nonsense mutations and the deletion were absent from the cDNAs indicating that only mRNA derived from the normal allele had been expressed. Similarly for the splice site mutations, only normal PROC cDNAs were obtained. In one case, exclusion of the mutated allele could be confirmed by polymorphism analysis. In contrast to these six mutations, the 2 bp insertion was not associated with loss of mRNA from the mutated allele. In this case, cDNA analysis revealed the absence of 19 bases from the PROC mRNA consistent with the generation and utilization of a cryptic splice site 3’ to the site of mutation, which would result in a frameshift and a premature stop codon. It is concluded that allelic exclusion is a common causative mechanism in those cases of type I protein C deficiency which result from mutations that introduce premature stop codons


1992 ◽  
Vol 67 (02) ◽  
pp. 272-276 ◽  
Author(s):  
C Paul ◽  
E van der Logt ◽  
Pieter H Reitsma ◽  
Rogier M Bertina

SummaryAlthough normally absent from the surface of all circulating cell types, tissue factor (TF) can be induced to appear on circulating monocytes by stimulants like bacterial lipopolysaccharide (LPS) and phorbolesters. Northern analysis of RNA isolated from LPS stimulated human monocytes demonstrates the presence of 2.2 kb and 3.1 kb TF mRNA species. The 2.2 kb message codes for the TF protein. As demonstrated by Northern blot analysis with a variety of TF gene probes, the 3.1 kb message arises from an alternative splicing process which fails to remove 955 bp from intron 1. Because of a stop codon in intron 1 no TF protein is produced from the 3.1 kb transcript. This larger transcript should therefore not be taken into account when comparing TF gene transcription and TF protein levels.


Sign in / Sign up

Export Citation Format

Share Document