F8 Heavy vs Light Chain Located Pre-terminal Stop Codon (PTC): Comparing the Intracellular Fate of Endogenous FVIII Variants in IPS Derived Endothelial Cells

2019 ◽  
Author(s):  
H. Singer ◽  
N. Nüsgen ◽  
M. Rath ◽  
R. Al-Rifai ◽  
O. El-Maarri ◽  
...  
2004 ◽  
Vol 79 (4) ◽  
pp. 543-551 ◽  
Author(s):  
S.P. Srinivas ◽  
M. Satpathy ◽  
P. Gallagher ◽  
E. Larivière ◽  
W. Van Driessche

Blood ◽  
2001 ◽  
Vol 97 (4) ◽  
pp. 973-980 ◽  
Author(s):  
Annemie Collen ◽  
Annemarie Maas ◽  
Teake Kooistra ◽  
Florea Lupu ◽  
Jos Grimbergen ◽  
...  

Abstract A congenital dysfibrinogenemia, fibrinogenNieuwegein, was discovered in a young man without any thromboembolic complications or bleeding. A homozygous insertion of a single nucleotide (C) in codon Aα 453 (Pro) introduced a stop codon at position 454, which resulted in the deletion of the carboxyl-terminal segment Aα 454-610. The ensuing unpaired cysteine at Aα 442 generated fibrinogen-albumin complexes of different molecular weights. The molecular abnormalities of fibrinogenNieuwegein led to a delayed clotting and a fibrin network with a low turbidity. Electron microscopy confirmed that thin fibrin bundles were organized in a fine network. The use of fibrinogenNieuwegein-derived fibrin (fibrinNieuwegein) in an in vitro angiogenesis model resulted in a strong reduction of tube formation. The ingrowth of human microvascular endothelial cells (hMVEC) was independent of αvβ3, indicating that the reduced ingrowth is not due to the absence of the RGD-adhesion site at position Aα 572-574. Rather, the altered structure of fibrinNieuwegeinis the cause, since partial normalization of the fibrin network by lowering the pH during polymerization resulted in an increased tube formation. Whereas factor XIIIa further decreased the ingrowth of hMVEC in fibrinNieuwegein, tissue transglutaminase (TG), which is released in areas of vessel injury, did not. This is in line with the absence of the cross-linking site for TG in the α-chains of fibrinogenNieuwegein. In conclusion, this newly discovered congenital dysfibrinogenemia has a delayed clotting time and leads to the formation of an altered fibrin structure, which could not be cross-linked by TG and which is less supportive for ingrowth of endothelial cells.


Blood ◽  
1988 ◽  
Vol 71 (5) ◽  
pp. 1268-1276 ◽  
Author(s):  
F van Iwaarden ◽  
PG de Groot ◽  
JJ Sixma ◽  
M Berrettini ◽  
BN Bouma

Abstract The presence of high-molecular weight (mol wt) kininogen was demonstrated in cultured human endothelial cells derived from the umbilical cord by immunofluorescence techniques. Cultured human endothelial cells contain 58 +/- 11 ng (n = 16) high-mol wt kininogen/10(6) cells as determined by an enzyme-linked immunosorbent assay (ELISA) specific for high-mol wt kininogen. High-mol wt kininogen was isolated from cultured human endothelial cells by immunoaffinity chromatography. Nonreduced sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that endothelial cell high-mol wt kininogen consisted of five protein bands with mol wts of 95,000, 85,000, 65,000, 46,000, and 30,000 daltons. Immunoblotting of the endothelial cell high-mol wt kininogen by using specific antisera against the heavy and light chain indicated that the 95,000-, 85,000-, and 65,000-dalton bands consisted of the heavy and light chain whereas the 46,000- and 30,000-dalton bands reacted only with the anti-light chain antiserum. Immunoprecipitation studies performed with lysed, metabolically labeled endothelial cells and monospecific antisera directed against high-mol wt kininogen suggested that high-mol wt kininogen is not synthesized by the endothelial cells. Endothelial cells cultured in high-mol wt kininogen-free medium did not contain high-mol wt kininogen. These studies indicate that endothelial cell high-mol wt kininogen was proteolytically cleaved in the culture medium and subsequently internalized by the endothelial cells. Binding and internalization studies performed with 125I-labeled, proteolytically cleaved, high-mol wt kininogen showed that endothelial cells can indeed bind and internalize proteolytically cleaved high-mol wt kininogen in a specific and saturable way.


1997 ◽  
Vol 235 (3) ◽  
pp. 657-662 ◽  
Author(s):  
Reiko Takahashi ◽  
Hiroshi Watanabe ◽  
Xu-Xia Zhang ◽  
Hiroyasu Kakizawa ◽  
Hideharu Hayashi ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e46510 ◽  
Author(s):  
Yuan Xiao ◽  
Yuhua Li ◽  
Jing Han ◽  
Yan Pan ◽  
Lu Tie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document