scholarly journals Adaptation to the induced effect stimulus normalizes surface slant perception and recalibrates eye position signals for azimuth

2005 ◽  
Vol 5 (10) ◽  
pp. 5 ◽  
Author(s):  
Baoxia Liu ◽  
Ellen M. Berends ◽  
Clifton M. Schor
1999 ◽  
Vol 39 (6) ◽  
pp. 1143-1170 ◽  
Author(s):  
Benjamin T. Backus ◽  
Martin S. Banks ◽  
Raymond van Ee ◽  
James A. Crowell

Author(s):  
Samantha Horvath ◽  
Kori Macdonald ◽  
John Galeotti ◽  
Roberta L. Klatzky

Objective These studies used threshold and slant-matching tasks to assess and quantitatively measure human perception of 3-D planar images viewed through a stereomicroscope. The results are intended for use in developing augmented-reality surgical aids. Background Substantial research demonstrates that slant perception is performed with high accuracy from monocular and binocular cues, but less research concerns the effects of magnification. Viewing through a microscope affects the utility of monocular and stereo slant cues, but its impact is as yet unknown. Method Participants performed in a threshold slant-detection task and matched the slant of a tool to a surface. Different stimuli and monocular versus binocular viewing conditions were implemented to isolate stereo cues alone, stereo with perspective cues, accommodation cue only, and cues intrinsic to optical-coherence-tomography images. Results At magnification of 5x, slant thresholds with stimuli providing stereo cues approximated those reported for direct viewing, about 12°. Most participants (75%) who passed a stereoacuity pretest could match a tool to the slant of a surface viewed with stereo at 5x magnification, with mean compressive error of about 20% for optimized surfaces. Slant matching to optical coherence tomography images of the cornea viewed under the microscope was also demonstrated. Conclusion Despite the distortions and cue loss introduced by viewing under the stereomicroscope, most participants were able to detect and interact with slanted surfaces. Application The experiments demonstrated sensitivity to surface slant that supports the development of augmented-reality systems to aid microscope-aided surgery.


2019 ◽  
Vol 63 (6) ◽  
pp. 60409-1-60409-11 ◽  
Author(s):  
Jonathan Tong ◽  
Robert S. Allison ◽  
Laurie M. Wilcox

Abstract Modern virtual reality (VR) headsets use lenses that distort the visual field, typically with distortion increasing with eccentricity. While content is pre-warped to counter this radial distortion, residual image distortions remain. Here we examine the extent to which such residual distortion impacts the perception of surface slant. In Experiment 1, we presented slanted surfaces in a head-mounted display and observers estimated the local surface slant at different locations. In Experiments 2 (slant estimation) and 3 (slant discrimination), we presented stimuli on a mirror stereoscope, which allowed us to more precisely control viewing and distortion parameters. Taken together, our results show that radial distortion has significant impact on perceived surface attitude, even following correction. Of the distortion levels we tested, 5% distortion results in significantly underestimated and less precise slant estimates relative to distortion-free surfaces. In contrast, Experiment 3 reveals that a level of 1% distortion is insufficient to produce significant changes in slant perception. Our results highlight the importance of adequately modeling and correcting lens distortion to improve VR user experience.


2017 ◽  
Vol 17 (14) ◽  
pp. 4 ◽  
Author(s):  
Baptiste Caziot ◽  
Benjamin T. Backus ◽  
Esther Lin

Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 79-79
Author(s):  
M S Banks ◽  
B T Backus

A vertical magnifier before one eye causes the induced effect: an apparent rotation of frontal surfaces toward that eye. The rotation required to restore apparent frontoparallelism grows linearly up to ∼4% magnification, but plateaus at 8%. We examined the cause of the plateau. Horizontal disparities (quantified by horizontal size ratios, HSRs) are ambiguous indicators of surface slant. Various retinal and nonretinal signals can allow veridical slant estimation from HSR, sensed eye position, vertical disparities (vertical size ratios, VSRs), and monocular cues. Vertical or horizontal magnification of one eye's image alters the natural relationships among HSR, VSR, eye position, and monocular cues. We argue that the induced-effect plateau is caused by conflicts between these means of estimating slant. A plateau is not observed in the geometric effect because some of the conflicts do not occur with horizontal magnification. Two experiments were designed to test this hypothesis. When strong monocular cues were present, plateaux occurred at ∼8% magnification in the induced, but not the geometric effect. When monocular slant cues were made useless, induced-effect plateaux were abolished. Even with strong monocular cues present, plateaux in the induced effect were eliminated when eye position was consistent with the vertical magnification in the retinal images. The smaller range of the induced effect can only be understood from consideration of all the signals involved in slant estimation.


Author(s):  
Myron L. Braunstein ◽  
John W. Payne
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document