Author Response: Effects of Fibroblastic and Endothelial Extracellular Matrices on Corneal Endothelial Cells

2010 ◽  
Vol 51 (12) ◽  
pp. 6906
Author(s):  
Rita Gruschwitz ◽  
Jens Friedrichs ◽  
Monika Valtink ◽  
Clemens Franz ◽  
Daniel J. Müller ◽  
...  
1988 ◽  
Vol 107 (2) ◽  
pp. 721-730 ◽  
Author(s):  
R Kapoor ◽  
L Y Sakai ◽  
S Funk ◽  
E Roux ◽  
P Bornstein ◽  
...  

A pepsin-resistant triple helical domain (chain 50,000 Mr) of type VIII collagen was isolated from bovine corneal Descemet's membrane and used as an immunogen for the production of mAbs. An antibody was selected for biochemical and tissue immunofluorescence studies which reacted both with Descemet's membrane and with type VIII collagen 50,000-Mr polypeptides by competition ELISA and immunoblotting. This antibody exhibited no crossreactivity with collagen types I-VI by competition ELISA. The mAb specifically precipitated a high molecular mass component of type VIII collagen (EC2, of chain 125,000 Mr) from the culture medium of subconfluent bovine corneal endothelial cells metabolically labeled for 24 h. In contrast, confluent cells in the presence of FCS and isotope for 7 d secreted a collagenous component of chain 60,000 Mr that did not react with the anti-type VIII collagen IgG. Type VIII collagen therefore appears to be synthesized as a discontinuous triple helical molecule with a predominant chain 125,000 Mr by subconfluent, proliferating cells in culture. Immunofluorescence studies with the mAb showed that type VIII collagen was deposited as fibrils in the extracellular matrix of corneal endothelial cells. In the fetal calf, type VIII collagen was absent from basement membranes and was found in a limited number of tissues. In addition to the linear staining pattern observed in the Descemet's membrane, type VIII collagen was found in highly fibrillar arrays in the ocular sclera, in the meninges surrounding brain, spinal cord, and optic nerve, and in periosteum and perichondrium. Fine fibrils were evident in the white matter of spinal cord, whereas a more generalized staining was apparent in the matrices of cartilage and bone. Despite attempts to unmask the epitope, type VIII collagen was not found in aorta, kidney, lung, liver, skin, and ligament. We conclude that this unusual collagen is a component of certain specialized extracellular matrices, several of which are derived from the neural crest.


Cornea ◽  
2019 ◽  
Vol 38 (9) ◽  
pp. 1175-1181 ◽  
Author(s):  
Mohit Parekh ◽  
Vito Romano ◽  
Alessandro Ruzza ◽  
Stephen B. Kaye ◽  
Diego Ponzin ◽  
...  

1988 ◽  
Vol 16 (1) ◽  
pp. 48-53
Author(s):  
Marina Ziche ◽  
Lucia Morbidelli ◽  
Annalisa Rubino ◽  
Piero Dolara ◽  
Stefano Bianchi ◽  
...  

Polymorphonuclear neutrophil (PMN) interaction with vascular endothelial cells is the initial event in the migration of neutrophils through blood vessel walls before reaching inflammation sites in tissues. The interaction between fibroblasts and endothelial cells and their extracellular matrices might be modulated by the activation of neutrophils that occurs at inflammatory reaction sites. We have used an in vitro model to study PMN function, measuring the adhesion of human PMNs to capillary endothelial cells and fibroblasts grown in culture and to their extracellular matrices. The interaction was measured in basal conditions and in the presence of the chemotactic effector, formyl-methionyl-leucyl-phenylalanine (FMLP at the concentration of 10 7M). Adhesion was expressed by the number of adherent PMNs/mm2 on a histological specimen. Moreover, we have adapted a program for image analysis to quantify neutrophil adhesion. Three times more PMNs adhered to matrices than to monolayers, and adherence could be increased by the presence of 10-7M FMLP, except in the case of fibroblast monolayers. We found a good correlation between microscopic observation and computerised image analysis measuring PMN adhesiveness to extracellular matrices.


2004 ◽  
Vol 79 (4) ◽  
pp. 543-551 ◽  
Author(s):  
S.P. Srinivas ◽  
M. Satpathy ◽  
P. Gallagher ◽  
E. Larivière ◽  
W. Van Driessche

Sign in / Sign up

Export Citation Format

Share Document