Interaction of Neutrophils with Endothelial Cells, Fibroblasts and Their Extracellular Matrices: Microscopic and Computerised Analysis

1988 ◽  
Vol 16 (1) ◽  
pp. 48-53
Author(s):  
Marina Ziche ◽  
Lucia Morbidelli ◽  
Annalisa Rubino ◽  
Piero Dolara ◽  
Stefano Bianchi ◽  
...  

Polymorphonuclear neutrophil (PMN) interaction with vascular endothelial cells is the initial event in the migration of neutrophils through blood vessel walls before reaching inflammation sites in tissues. The interaction between fibroblasts and endothelial cells and their extracellular matrices might be modulated by the activation of neutrophils that occurs at inflammatory reaction sites. We have used an in vitro model to study PMN function, measuring the adhesion of human PMNs to capillary endothelial cells and fibroblasts grown in culture and to their extracellular matrices. The interaction was measured in basal conditions and in the presence of the chemotactic effector, formyl-methionyl-leucyl-phenylalanine (FMLP at the concentration of 10 7M). Adhesion was expressed by the number of adherent PMNs/mm2 on a histological specimen. Moreover, we have adapted a program for image analysis to quantify neutrophil adhesion. Three times more PMNs adhered to matrices than to monolayers, and adherence could be increased by the presence of 10-7M FMLP, except in the case of fibroblast monolayers. We found a good correlation between microscopic observation and computerised image analysis measuring PMN adhesiveness to extracellular matrices.

1983 ◽  
Vol 97 (5) ◽  
pp. 1648-1652 ◽  
Author(s):  
R Montesano ◽  
L Orci ◽  
P Vassalli

We have studied the behavior of cloned capillary endothelial cells grown inside a three dimensional collagen matrix. Cell monolayers established on the surface of collagen gels were covered with a second layer of collagen. This induced the monolayers of endothelial cells to reorganize into a network of branching and anastomosing capillary-like tubes. As seen by electron microscopy, the tubes were formed by at least two cells (in transverse sections) delimiting a narrow lumen. In addition, distinct basal lamina material was present between the abluminal face of the endothelial cells and the collagen matrix. These results showed that capillary endothelial cells have the capacity to form vessel-like structures with well-oriented cell polarity in vitro. They also suggest that an appropriate topological relationship of endothelial cells with collagen matrices, similar to that occurring in vivo, has an inducive role on the expression of this potential. This culture system provides a simple in vitro model for studying the factors involved in the formation of new blood vessels (angiogenesis).


1995 ◽  
Vol 17 (1) ◽  
pp. 25-32 ◽  
Author(s):  
D. J. Bobilya ◽  
K. D'Amour ◽  
A. Palmer ◽  
C. Skeffington ◽  
N. Therrien ◽  
...  

1974 ◽  
Vol 60 (3) ◽  
pp. 673-684 ◽  
Author(s):  
Michael A. Gimbrone ◽  
Ramzi S. Cotran ◽  
Judah Folkman

Human endothelial cells, obtained by collagenase treatment of term umbilical cord veins, were cultured using Medium 199 supplemented with 20% fetal calf serum. Small clusters of cells initially spread on plastic or glass, coalesced and grew to form confluent monolayers of polygonal cells by 7 days. Cells in primary and subcultures were identified as endothelium by the presence of Weibel-Palade bodies by electron microscopy. A morphologically distinct subpopulation of cells contaminating some primary endothelial cultures was selectively subcultured, and identified by ultrastructural criteria as vascular smooth muscle. Autoradiography of endothelial cells after exposure to [3H]thymidine showed progressive increases in labeling in growing cultures beginning at 24 h. In recently confluent cultures, labeling indices were 2.4% in central closely packed regions, and 53.2% in peripheral growing regions. 3 days after confluence, labeling was uniform, being 3.5 and 3.9% in central and peripheral areas, respectively. When small areas of confluent cultures were experimentally "denuded," there were localized increases in [3H]thymidine labeling and eventual reconstitution of the monolayer. Liquid scintillation measurements of [3H]thymidine incorporation in primary and secondary endothelial cultures in microwell trays showed a similar correlation of DNA synthesis with cell density. These data indicate that endothelial cell cultures may provide a useful in vitro model for studying pathophysiologic factors in endothelial regeneration.


1999 ◽  
Vol 67 (8) ◽  
pp. 3921-3928 ◽  
Author(s):  
Roberta M. O’Connor ◽  
Jennifer A. Long ◽  
David R. Allred

ABSTRACT Babesia bovis, an intraerythrocytic parasite of cattle, is sequestered in the host microvasculature, a behavior associated with cerebral and vascular complications of this disease. Despite the importance of this behavior to disease etiology, the underlying mechanisms have not yet been investigated. To study the components involved in sequestration, B. bovis parasites that induce adhesion of the infected erythrocytes (IRBCs) to bovine brain capillary endothelial cells (BBEC) in vitro were isolated. Two clonal lines, CD7A+I+ and CE11A+I−, were derived from a cytoadherent, monoclonal antibody 4D9.1G1-reactive parasite population. This antibody recognizes a variant, surface-exposed epitope of the variant erythrocyte surface antigen 1 (VESA1) of B. bovisIRBCs. Both clonal lines were cytoadhesive to BBEC and two other bovine endothelial cell lines but not to COS7 cells, FBK-4 cells, C32 melanoma cells, or bovine brain pericytes. By transmission electron microscopy, IRBCs were observed to bind to BBEC via the knobby protrusions on the IRBC surface, indicating involvement of components associated with these structures. Inhibition of protein export in intact, trypsinized IRBCs ablated both erythrocyte surface reexpression of parasite protein and cytoadhesion. IRBCs allowed to recover surface antigen expression regained the ability to bind endothelial cells, demonstrating that parasite protein export is required for cytoadhesion. We propose the use of this assay as an in vitro model to study the components involved in B. bovis cytoadherence and sequestration.


Sign in / Sign up

Export Citation Format

Share Document