scholarly journals Automatic Detection of Diabetic Retinopathy in Retinal Fundus Photographs Based on Deep Learning Algorithm

2019 ◽  
Vol 8 (6) ◽  
pp. 4 ◽  
Author(s):  
Feng Li ◽  
Zheng Liu ◽  
Hua Chen ◽  
Minshan Jiang ◽  
Xuedian Zhang ◽  
...  
JAMA ◽  
2016 ◽  
Vol 316 (22) ◽  
pp. 2402 ◽  
Author(s):  
Varun Gulshan ◽  
Lily Peng ◽  
Marc Coram ◽  
Martin C. Stumpe ◽  
Derek Wu ◽  
...  

Author(s):  
Mohamed Jebran P. ◽  
Sufia Banu

Artificial intelligence (AI) is rapidly evolving from machine learning (ML) to deep learning (DL), which has ignited particular interest in ophthalmology as well. Deep learning has been applied in ophthalmology to fundus photographs, which achieve robust classification performance in the detection of diabetic retinopathy (DR). Diabetic retinopathy is a progressive condition observed in people who have had multiple years of diabetes mellitus. This paper focuses on examining how a deep learning algorithm can be applied for the detection and classification of diabetic retinopathy, both at the image level and at the lesion level. The performance of various neural networks is summarized by taking into account the sensitivity, precision, accuracy with respect to the size of the test datasets. Deep learning problems are discussed at the end.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Filippo Arcadu ◽  
Fethallah Benmansour ◽  
Andreas Maunz ◽  
Jeff Willis ◽  
Zdenka Haskova ◽  
...  

AbstractThe global burden of diabetic retinopathy (DR) continues to worsen and DR remains a leading cause of vision loss worldwide. Here, we describe an algorithm to predict DR progression by means of deep learning (DL), using as input color fundus photographs (CFPs) acquired at a single visit from a patient with DR. The proposed DL models were designed to predict future DR progression, defined as 2-step worsening on the Early Treatment Diabetic Retinopathy Diabetic Retinopathy Severity Scale, and were trained against DR severity scores assessed after 6, 12, and 24 months from the baseline visit by masked, well-trained, human reading center graders. The performance of one of these models (prediction at month 12) resulted in an area under the curve equal to 0.79. Interestingly, our results highlight the importance of the predictive signal located in the peripheral retinal fields, not routinely collected for DR assessments, and the importance of microvascular abnormalities. Our findings show the feasibility of predicting future DR progression by leveraging CFPs of a patient acquired at a single visit. Upon further development on larger and more diverse datasets, such an algorithm could enable early diagnosis and referral to a retina specialist for more frequent monitoring and even consideration of early intervention. Moreover, it could also improve patient recruitment for clinical trials targeting DR.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Aan Chu ◽  
David Squirrell ◽  
Andelka M. Phillips ◽  
Ehsan Vaghefi

This systematic review was performed to identify the specifics of an optimal diabetic retinopathy deep learning algorithm, by identifying the best exemplar research studies of the field, whilst highlighting potential barriers to clinical implementation of such an algorithm. Searching five electronic databases (Embase, MEDLINE, Scopus, PubMed, and the Cochrane Library) returned 747 unique records on 20 December 2019. Predetermined inclusion and exclusion criteria were applied to the search results, resulting in 15 highest-quality publications. A manual search through the reference lists of relevant review articles found from the database search was conducted, yielding no additional records. A validation dataset of the trained deep learning algorithms was used for creating a set of optimal properties for an ideal diabetic retinopathy classification algorithm. Potential limitations to the clinical implementation of such systems were identified as lack of generalizability, limited screening scope, and data sovereignty issues. It is concluded that deep learning algorithms in the context of diabetic retinopathy screening have reported impressive results. Despite this, the potential sources of limitations in such systems must be evaluated carefully. An ideal deep learning algorithm should be clinic-, clinician-, and camera-agnostic; complying with the local regulation for data sovereignty, storage, privacy, and reporting; whilst requiring minimum human input.


2021 ◽  
Vol 8 (3) ◽  
pp. 619
Author(s):  
Candra Dewi ◽  
Andri Santoso ◽  
Indriati Indriati ◽  
Nadia Artha Dewi ◽  
Yoke Kusuma Arbawa

<p>Semakin meningkatnya jumlah penderita diabetes menjadi salah satu faktor penyebab semakin tingginya penderita penyakit <em>diabetic retinophaty</em>. Salah satu citra yang digunakan oleh dokter mata untuk mengidentifikasi <em>diabetic retinophaty</em> adalah foto retina. Dalam penelitian ini dilakukan pengenalan penyakit diabetic retinophaty secara otomatis menggunakan citra <em>fundus</em> retina dan algoritme <em>Convolutional Neural Network</em> (CNN) yang merupakan variasi dari algoritme Deep Learning. Kendala yang ditemukan dalam proses pengenalan adalah warna retina yang cenderung merah kekuningan sehingga ruang warna RGB tidak menghasilkan akurasi yang optimal. Oleh karena itu, dalam penelitian ini dilakukan pengujian pada berbagai ruang warna untuk mendapatkan hasil yang lebih baik. Dari hasil uji coba menggunakan 1000 data pada ruang warna RGB, HSI, YUV dan L*a*b* memberikan hasil yang kurang optimal pada data seimbang dimana akurasi terbaik masih dibawah 50%. Namun pada data tidak seimbang menghasilkan akurasi yang cukup tinggi yaitu 83,53% pada ruang warna YUV dengan pengujian pada data latih dan akurasi 74,40% dengan data uji pada semua ruang warna.</p><p> </p><p><em><strong>Abstract</strong></em></p><p class="Abstract"><em>Increasing the number of people with diabetes is one of the factors causing the high number of people with diabetic retinopathy. One of the images used by ophthalmologists to identify diabetic retinopathy is a retinal photo. In this research, the identification of diabetic retinopathy is done automatically using retinal fundus images and the Convolutional Neural Network (CNN) algorithm, which is a variation of the Deep Learning algorithm. The obstacle found in the recognition process is the color of the retina which tends to be yellowish red so that the RGB color space does not produce optimal accuracy. Therefore, in this research, various color spaces were tested to get better results. From the results of trials using 1000 images data in the color space of RGB, HSI, YUV and L * a * b * give suboptimal results on balanced data where the best accuracy is still below 50%. However, the unbalanced data gives a fairly high accuracy of 83.53% with training data on the YUV color space and 74,40% with testing data on all color spaces.</em></p><p><em><strong><br /></strong></em></p>


Sign in / Sign up

Export Citation Format

Share Document