A Dual-Weighted Approach to Order Reduction in 4DVAR Data Assimilation

2008 ◽  
Vol 136 (3) ◽  
pp. 1026-1041 ◽  
Author(s):  
D. N. Daescu ◽  
I. M. Navon

Abstract Strategies to achieve order reduction in four-dimensional variational data assimilation (4DVAR) search for an optimal low-rank state subspace for the analysis update. A common feature of the reduction methods proposed in atmospheric and oceanographic studies is that the identification of the basis functions relies on the model dynamics only, without properly accounting for the specific details of the data assimilation system (DAS). In this study a general framework of the proper orthogonal decomposition (POD) method is considered and a cost-effective approach is proposed to incorporate DAS information into the order-reduction procedure. The sensitivities of the cost functional in 4DVAR data assimilation with respect to the time-varying model state are obtained from a backward integration of the adjoint model. This information is further used to define appropriate weights and to implement a dual-weighted proper orthogonal decomposition (DWPOD) method for order reduction. The use of a weighted ensemble data mean and weighted snapshots using the adjoint DAS is a novel element in reduced-order 4DVAR data assimilation. Numerical results are presented with a global shallow-water model based on the Lin–Rood flux-form semi-Lagrangian scheme. A simplified 4DVAR DAS is considered in the twin-experiment framework with initial conditions specified from the 40-yr ECMWF Re-Analysis (ERA-40) datasets. A comparative analysis with the standard POD method shows that the reduced DWPOD basis may provide an increased efficiency in representing an a priori specified forecast aspect and as a tool to perform reduced-order optimal control. This approach represents a first step toward the development of an order-reduction methodology that combines in an optimal fashion the model dynamics and the characteristics of the 4DVAR DAS.

Author(s):  
Haojiong Zhang ◽  
Brad A. Miller ◽  
Robert G. Landers

A nonlinear reduced-order modeling approach based on Proper Orthogonal Decomposition (POD) is utilized to develop an efficient low order model, based on ordinary differential equations, for mechanical gas face seal systems. An example of a coned mechanical gas face seal in a flexibly mounted stator configuration is presented. The axial mode is modeled, and simulation studies are conducted using different initial conditions and forcing inputs. The results agree well with a fully meshed finite difference model, while the resulting model order is significantly decreased.


2006 ◽  
Vol 128 (4) ◽  
pp. 817-827 ◽  
Author(s):  
Haojiong Zhang ◽  
Brad A. Miller ◽  
Robert G. Landers

An approach based on proper orthogonal decomposition and Galerkin projection is presented for developing low-order nonlinear models of the gas film pressure within mechanical gas face seals. A technique is developed for determining an optimal set of global basis functions for the pressure field using data measured experimentally or obtained numerically from simulations of the seal motion. The reduced-order gas film models are shown to be computationally efficient compared to full-order models developed using the conventional semidiscretization methods. An example of a coned mechanical gas face seal in a flexibly mounted stator configuration is presented. Axial and tilt modes of stator motion are modeled, and simulation studies are conducted using different initial conditions and force inputs. The reduced-order models are shown to be applicable to seals operating within a wide range of compressibility numbers, and results are provided that demonstrate the global reduced-order model is capable of predicting the nonlinear gas film forces even with large deviations from the equilibrium clearance.


2020 ◽  
Author(s):  
Christian Amor ◽  
José M Pérez ◽  
Philipp Schlatter ◽  
Ricardo Vinuesa ◽  
Soledad Le Clainche

Abstract This article introduces some soft computing methods generally used for data analysis and flow pattern detection in fluid dynamics. These techniques decompose the original flow field as an expansion of modes, which can be either orthogonal in time (variants of dynamic mode decomposition), or in space (variants of proper orthogonal decomposition) or in time and space (spectral proper orthogonal decomposition), or they can simply be selected using some sophisticated statistical techniques (empirical mode decomposition). The performance of these methods is tested in the turbulent wake of a wall-mounted square cylinder. This highly complex flow is suitable to show the ability of the aforementioned methods to reduce the degrees of freedom of the original data by only retaining the large scales in the flow. The main result is a reduced-order model of the original flow case, based on a low number of modes. A deep discussion is carried out about how to choose the most computationally efficient method to obtain suitable reduced-order models of the flow. The techniques introduced in this article are data-driven methods that could be applied to model any type of non-linear dynamical system, including numerical and experimental databases.


Author(s):  
Alok Sinha

This paper deals with the development of an accurate reduced-order model of a bladed disk with geometric mistuning. The method is based on vibratory modes of various tuned systems and proper orthogonal decomposition of coordinate measurement machine (CMM) data on blade geometries. Results for an academic rotor are presented to establish the validity of the technique.


Author(s):  
D. Lengani ◽  
D. Simoni ◽  
V. Yepmo ◽  
M. Ubaldi ◽  
P. Zunino ◽  
...  

Abstract In the present work, Proper Orthogonal Decomposition (POD) has been applied to a large dataset describing the profile losses of Low Pressure Turbine (LPT) cascades, thus allowing: i) the identification of the most influencing parameters that affect the loss generation; ii) the identification of the minimum number of requested conditions useful to educate a model with a reduced number of data. The dataset is constituted by the total pressure loss coefficient distributions in the pitchwise direction. The experiments have been conducted varying the flow Reynolds number, the reduced frequency and the flow coefficient. Two cascades are considered: the first for tuning the procedure and identifying the number of really requested tests, and the second for the verification of the proposed model. They are characterized by the same axial chord but different pitch-to-chord ratio and different flow angles, hence two Zweifel numbers. The POD mode distributions indicate the spatial region where losses occur, the POD eigenvectors provide how such losses vary for the different design conditions and the POD eigenvalues provide the rank of the approximation. Since the POD space shows an optimal basis describing the overall process with a low rank representation (LRR), a smooth kernel is educated by means of Least-Squares method (LSM) on the POD eigenvectors. Particularly, only a subset of data (equal to the rank of the problem) has been used to generate the POD modes and related coefficients. Thanks to the LRR of the problem in the POD space, predictors are low order polynomials of the independent variables (Re, f+ and ϕ). It will be shown that the smooth kernel adequately estimates the loss distribution in points that do not participate to the education. Additionally, keeping the same steps for the education of the kernel on another cascade, loss distribution and magnitude are still well captured. Thus, analysis show that the rank of the problem is much lower than the tested conditions, and consequently a reduced number of tests are really necessary. This could be useful to reduce the number of hi-fidelity simulations or detailed experiments in the future, thus further contributing to optimize LPT blades.


2021 ◽  
Author(s):  
Daniele Simoni ◽  
Davide Lengani ◽  
Vianney Yepmo ◽  
Francesco Bertini ◽  
Pietro Zunino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document