Volume 2E: Turbomachinery
Latest Publications


TOTAL DOCUMENTS

70
(FIVE YEARS 70)

H-INDEX

0
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791884102

Author(s):  
Shreyas Hegde ◽  
Robert Kielb ◽  
Laith Zori ◽  
Rubens Campregher

Abstract This paper focuses on the impact of multi-row interaction on the forced response behavior of an embedded compressor rotor at higher order modes. The authors in previous papers have discussed about the multi-row influence at the torsional mode resonant crossing and this paper extends the study to higher order modes. The paper talks about both the steady and unsteady influence of having additional rows in the configuration. It makes use of the time transformation (TT) method available in CFX to reduce the number of passages required in each row. Since the number of vanes from both the stators and the inlet guide vanes (IGV) is the same, the excitations from upstream rows and the potential field influence of the downstream row all contribute to the forcing, which is quantified both in terms of modal force and individual blade response. This paper describes the multi-row influence on the chordwise bending modes at both the peak efficiency (PE) and the high loading (HL) operating condition. To ascertain this influence, a 3-row case with just the two neighboring stators (S1, R2, S2 a 4-row case with the downstream rotor as well (S1, R2, S2, R3) and a 5-row with the upstream IGV were considered. While the 3-row case helped to determine the influence of neighboring stators on the forcing, the 4-row case provided the influence of the downstream rotor on the forced response behavior. Since the number of IGV vanes was the same as the neighboring stators the nature of interference between the stator and IGV wakes was determined as well. The 4-row case helped investigate physical wave reflections off a downstream rotating row, which had a significant influence on the modal force. The final section of the paper focuses on the mistuning response, which essentially couples frequency variations with the structural and aerodynamic aspects to predict individual blade responses, which are compared to experimental data. A mistuning analysis was carried out with the frequency mistuning present in the experimental facility Some of the key conclusions from this investigation are: 1) The interference of the IGV with the downstream stator (S1) is destructive at peak efficiency and constructive at high loading in line with the previous observation at torsional modes; 2) Physical wave reflections are constructive at all operating conditions at higher order modes unlike torsional modes where it was destructive; 3) The 3-row case gives the most accurate prediction in terms of average blade response and the 5-row case in terms of maximum blade response. Hence one of the significant findings is that, the aeromechanical behavior can be ascertained to a great deal of accuracy using just 3-rows at higher order modes crossings.


Author(s):  
Martin Sinkwitz ◽  
Benjamin Winhart ◽  
David Engelmann ◽  
Francesca di Mare

Abstract In this study the unsteady behavior of the boundary layers developing on a LPT stator profile and their effect on secondary flow patterns in a 1.5-stage turbine configuration are investigated under the influence of periodic inflow perturbations. The experimental setup previously employed to analyze the unsteady secondary flow in the stator wake has been enhanced by hotfilm sensor arrays placed on the stator profiles at different blade height positions to provide time-resolved data from within the passage. The turbine inflow is perturbed by periodically passing circular bars and a modified T106-profile has been considered for the blading. The modified profile, labeled as T106RUB, was developed for matching the transition and separation characteristics of the original T106 profile at low flow speeds, thus facilitating measurements to be taken in a large-scale test rig with its improved accessibility. The transition phenomena occurring in the profile boundary layers are investigated under both unperturbed and periodically perturbed inflow by means of spectral analysis, the semi-quantitative characterization of the wall-stress system and an evaluation of the statistic quantities. In particular, the periodic changes of the suction side boundary layer flow region towards the trailing edge are studied in detail. Furthermore, time-resolved hot-film measurements at different blade height positions facilitate a detailed comparison of the quasi two-dimensional mid-span profile flow and the near end wall profile flow which is subject to influence of secondary flow structures. These information are employed to assess to which extent the additional turbulence originating from the wakes affects the blade boundary layers and thus the secondary flow structures. Furthermore, the role of the perturbation frequency on the coupled system of boundary layers and secondary flow structures is evaluated.


Author(s):  
Souvik Naskar ◽  
S. Sarkar

Abstract Modern commercial airliners use multi-element aerofoils to enhance take-off and landing performance. Further, multielement aerofoil configurations have been shown to improve the aerodynamic characteristics of wind turbines. In the present study, high resolution Large Eddy Simulation (LES) is used to explore the low Reynolds Number (Re = 0.832 × 104) aerodynamics of a 30P30N multi-element aerofoil at an angle of attack, α = 4°. In the present simulation, wake shed from a leading edge element or slat is found to interact with the separated shear layer developing over the suction surface of the main wing. High receptivity of shear layer via amplification of free-stream turbulence leads to rollup and breakdown, forming a large separation bubble. A transient growth of fluctuations is observed in the first half of the separation bubble, where levels of turbulence becomes maximum near the reattachment and then decay depicting saturation of turbulence. Results of the present LES are found to be in close agreement with the experiment depicting high vortical activity in the outer layer. Some features of the flow field here are similar to those occur due to interactions of passing wake and the separated boundary layer on the suction surface of high lift low pressure turbine blades.


Author(s):  
Mael Harnieh ◽  
Nicolas Odier ◽  
Jérôme Dombard ◽  
Florent Duchaine ◽  
Laurent Gicquel

Abstract Film cooling is commonly used to protect turbine vanes and blades from the hot gases produced in the combustion chamber. The design and optimization of these systems can however only be achieved if a precise prediction of the fluid mechanics and film efficiency is guaranteed at a level where induced losses are fully mastered. Such a prerequisite induces at the numerical level to be able to identify and assess losses. In this context, the present study addresses loss assessment in a wall-resolved Large Eddy Simulation (LES) of the film-cooled high-pressure turbine blade cascade T120D from the European project AITEB II. The objectives are twofolds: (1) to evaluate the capacity of LES to predict adiabatic film cooling effectiveness in a mastered academic case; and (2) to investigate loss generation mechanisms in a fully anisothermal configuration. When it comes to LES predictions of T120D, the flow structure around the blade and the coolant jet organization are coherent with literature findings. Satisfactory agreements are furthermore retrieved for the pressure load prediction as well as the adiabatic film effectiveness if compared to the experiment. Loss generation is then investigated illustrating the fact that aerodynamics losses dominate mixing losses which are mainly located in the coolant film. This is in line with the temperature difference between the hot and coolant flows that is low for this experimental condition. Distinct contributions can however be made available by studying the local loss generation maps by means of Second Law Analysis if recast in the specific context of anisothermal flows when simulated by LES.


Author(s):  
Carlo Cravero ◽  
Davide Marsano

Abstract High-speed centrifugal compressor requirements include a wide operating range between choking and stall especially for turbocharging applications. The prediction of the stability limit at different speeds is still challenging. In literature, several studies have been published on the phenomena that trigger the compressor instability. However, a comprehensive analysis of criteria that can be used in the first steps of centrifugal compressors design to predict the stability limit is still missing. In previous work the authors have already presented a criterion, so called “Stability Parameter”, to predict the surge line of centrifugal compressors based on a simplified CFD approach that does not require excessive computational resources and that can be efficiently used in the preliminary design phases. The above methodology has demonstrated its accuracy for centrifugal compressors with vaned diffuser, but a lower accuracy has been detected for vaneless diffusers. Before proceeding to identify additional criteria focused on compressors with vaneless diffuser, an in-depth fluid dynamics analysis has been necessary. This analysis has been also carried out through fully 3D unsteady simulations to allow identifying the real phenomena linked to the trigger of the instability of centrifugal compressors. It has been found how these phenomena are strongly related to the rotational speed, in particular have been shown the key role of the volute at high rotational speed.


Author(s):  
Mael Harnieh ◽  
Nicolas Odier ◽  
Jérôme Dombard ◽  
Florent Duchaine ◽  
Laurent Gicquel

Abstract The use of numerical simulations to design and optimize turbine vane cooling requires precise prediction of the fluid mechanics and film cooling effectiveness. This results in the need to numerically identify and assess the various origins of the losses taking place in such systems and if possible in engine representative conditions. Large-Eddy Simulation (LES) has shown recently its ability to predict turbomachinery flows in well mastered academic cases such as compressor or turbine cascades. When it comes to industrial representative configurations, the geometrical complexities, high Reynolds and Mach numbers as well as boundary condition setup lead to an important increase of CPU cost of the simulations. To evaluate the capacity of LES to predict film cooling effectiveness as well as to investigate the loss generation mechanisms in a turbine vane in engine representative conditions, a wall-modeled LES of the FACTOR film-cooled nozzle is performed. After the comparison of integrated values to validate the operating point of the vanes, the mean flow structure is investigated. In the coolant film, a strong turbulent mixing process between coolant and hot flows is observed. As a result, the spatial distribution of time-averaged vane surface temperature is highly heterogeneous. Comparisons with the experiment show that the LES prediction fairly reproduces the spatial distribution of the adiabatic film effectiveness. The loss generation in the configuration is then investigated. To do so, two methodologies, i.e, performing balance of total pressure in the vanes wakes as mainly used in the literature and Second Law Analysis (SLA) are evaluated. Balance of total pressure without the contribution of thermal effects only highlights the losses generated by the wakes and secondary flows. To overcome this limitation, SLA is adopted by investigating loss maps. Thanks to this approach, mixing losses are shown to dominate in the coolant film while aerodynamic losses dominate in the coolant pipe region.


Author(s):  
Sebastian Wittwer ◽  
Ivo Sandor

Abstract Recent developments in turbocharged gasoline engines have established new requirements for the turbine. A simple approach of scaling or optimizing existing turbines on component level might not be sufficient in terms of finding an optimal solution according to the multi-point, multi-disciplinary layout target. In the following paper nondimensional functional parameters are derived from turbomachinery analytics and rated on corresponding values of existing turbine stages. The influence of different parameters on aerodynamic performance is discussed based on CFD results and arranged according to their sensitivity for different engine relevant operating conditions. A metamodel for the preliminary design of variable nozzle turbine stages is derived from DoE (Design of Experiments) based CFD results. It is evaluated regarding its predictive quality on several exemplary turbine stages. Both, CFD and experimental results are therefore used while the experimental results are made up of hot gas stand measurements as well as measurements on engine test bench. Thus, not only the influence of functional parameters can be verified on turbine efficiency characteristics, but beyond that also the predictive quality of engine performance can be assessed.


Author(s):  
Dominik Schlüter ◽  
Robert P. Grewe ◽  
Fabian Wartzek ◽  
Alexander Liefke ◽  
Jan Werner ◽  
...  

Abstract Rotating stall is a non-axisymmetric disturbance in axial compressors arising at operating conditions beyond the stability limit of a stage. Although well-known, its driving mechanisms determining the number of stall cells and their rotational speed are still marginally understood. Numerical studies applying full-wheel 3D unsteady RANS calculations require weeks per operating point. This paper quantifies the capability of a more feasible quasi-2D approach to reproduce 3D rotating stall and related sensitivities. The first part of the paper deals with the validation of a numerical baseline the simplified model is compared to in detail. Therefore, 3D computations of a state-of-the-art transonic compressor are conducted. At steady conditions the single-passage RANS CFD matches the experimental results within an error of 1% in total pressure ratio and mass flow rate. At stalled conditions, the full-wheel URANS computation shows the same spiketype disturbance as the experiment. However, the CFD underpredicts the stalling point by approximately 7% in mass flow rate. In deep stall, the computational model correctly forecasts a single-cell rotating stall. The stall cell differs by approximately 21% in rotational speed and 18% in circumferential size from the experimental findings. As the 3D model reflects the compressor behaviour sufficiently accurate, it is considered valid for physical investigations. In the second part of the paper, the validated baseline is reduced in radial direction to a quasi-2D domain only resembling the compressor tip area. Four model variations regarding span-wise location and extent are numerically investigated. As the most promising model matches the 3D flow conditions in the rotor tip region, it correctly yields a single-cell rotating stall. The cell differs by only 7% in circumferential size from the 3D results. Due to the impeded radial migration in the quasi-2D slice, however, the cell exhibits an increased axial extent. It is assumed, that the axial expansion into the adjacent rows causes the difference in cell speed by approximately 24%. Further validation of the reduced model against experimental findings reveals, that it correctly reflects the sensitivity of circumferential cell size to flow coefficient and individual cell speed to compressor shaft speed. As the approach reduced the wall clock time by 92%, it can be used to increase the physical understanding of rotating stall at much lower costs.


Author(s):  
Zitian Niu ◽  
Zhenzhong Sun ◽  
Baotong Wang ◽  
Xinqian Zheng

Abstract Rotating stall is an important unstable flow phenomenon that leads to performance degradation and limits the stability boundary in centrifugal compressors. The volute is one of the sources to induce the non-axisymmetric flow in a centrifugal compressor, which has an important effect on the performance of compressors. However, the influence of volute on rotating stall is not clear. Therefore, the effects of volute on rotating stall by experimental and numerical simulation have been explored in this paper. It’s shown that one rotating stall cell generates in a specific location and disappears in another specific location of the vaneless diffuser as a result of the distorted flow field caused by the volute. Also, the cells cannot stably rotate in a whole circle. The frequency related to rotating stall captured in the experiment is 43.9% of the impeller passing frequency (IPF), while it is 44.7% of IPF captured by three-dimensional unsteady numerical simulation, which proves the accuracy of the numerical method in this study. The numerical simulation further reveals that the stall cell initialized in a specific location can be split into several cells during the evolution process. The reason for this is that the blockage in the vaneless diffuser induced by rotating stall is weakened by the mainstream from the impeller exit to make one initialized cell disperse into several ones. The volute has an important influence on the generation and evolution process of the rotating stall cells of compressors. By optimizing volute geometry to reduce the distortion of the flow field, it is expected that rotating stall can be weakened or suppressed, which is helpful to widen the operating range of centrifugal compressors.


Author(s):  
Thomas Ceyrowsky ◽  
Andre Hildebrandt ◽  
Martin Heinrich ◽  
Rüdiger Schwarze

Abstract A volute’s loss coefficient is highly sensitive to Mach number, circumferential velocity and flow rate at volute inlet. In case of a backswept impeller, these parameters are coupled to each other. An increased flowrate leads to a steeper absolute flow angle at impeller exit and hence to a decrease of circumferential velocity. The absolute Mach number is also altered. Therefore, in order to investigate the effects of flowrate and flow angle separately, one would have to vary the diffuser width together with the flowrate, keeping the flow angle constant. This corresponds to coupling the volute with aerodynamically similar impellers, designed for higher and lower flowrates. Since this is elaborate, there is no adequate study available in open literature, assessing a volute’s global loss map. In this work, a new numerical approach for the prediction of a volute’s representative loss map is presented: The volute is calculated by means of steady CFD as a standalone component. The inlet boundary conditions are carefully selected by means of 1D and applied together with different diffuser widths. This allows for separate investigation of the impacts of flow angle, flow rate and Mach number. Validation against full stage CFD confirms the applicability of the standalone model. The results exhibit that minimum losses do not necessarily occur at the theoretical matching point but either when the volute is smaller or bigger, depending on the inlet flow angle. Investigations of the loss mechanisms at different operating conditions provide useful guidelines for volute design. Finally, the validity of these study’s findings for volutes with different geometrical features is examined by comparison with experimental data as well as with fullstage CFD.


Sign in / Sign up

Export Citation Format

Share Document