The Diabatic Contour-Advective Semi-Lagrangian Algorithms for the Spherical Shallow Water Equations

2009 ◽  
Vol 137 (9) ◽  
pp. 2979-2994 ◽  
Author(s):  
Ali R. Mohebalhojeh ◽  
David G. Dritschel

Abstract The diabatic contour-advective semi-Lagrangian (DCASL) algorithm is extended to the thermally forced shallow water equations on the sphere. DCASL rests on the partitioning of potential vorticity (PV) to adiabatic and diabatic parts solved, respectively, by contour advection and a grid-based conventional algorithm. The presence of PV in the source term for diabatic PV makes the shallow water equations distinct from the quasigeostrophic model previously studied. To address the more rapid generation of finescale structures in diabatic PV, two new features are added to DCASL: (i) the use of multiple sets of contours with successively finer contour intervals and (ii) the application of the underlying method of DCASL at a higher level to diabatic PV. That is, the diabatic PV is allowed to have both contour and grid parts. The added features make it possible to make the grid part of diabatic PV arbitrarily small and thus pave the way for a fully Lagrangian DCASL in the presence of forcing. The DCASL algorithms are constructed using a standard semi-Lagrangian (SL) algorithm to solve for the grid-based part of diabatic PV. The 25-day time evolution of an unstable midlatitude jet triggered by the action of thermal forcing is used as a test case to examine and compare the properties of the DCASL algorithms with a pure SL algorithm for PV. Diagnostic measures of vortical and unbalanced activity as well as of the relative strength of the grid and contour parts of the solution for PV indicate that the superiority of contour advection can be maintained even in the presence of strong, nonsmooth forcing.

2015 ◽  
Vol 142 (694) ◽  
pp. 488-495 ◽  
Author(s):  
R. K. Scott ◽  
L. M. Harris ◽  
L. M. Polvani

Author(s):  
Hilary Weller

The shallow water equations are solved using a mesh of polygons on the sphere, which adapts infrequently to the predicted future solution. Infrequent mesh adaptation reduces the cost of adaptation and load-balancing and will thus allow for more accurate mapping on adaptation. We simulate the growth of a barotropically unstable jet adapting the mesh every 12 h. Using an adaptation criterion based largely on the gradient of the vorticity leads to a mesh with around 20 per cent of the cells of a uniform mesh that gives equivalent results. This is a similar proportion to previous studies of the same test case with mesh adaptation every 1–20 min. The prediction of the mesh density involves solving the shallow water equations on a coarse mesh in advance of the locally refined mesh in order to estimate where features requiring higher resolution will grow, decay or move to. The adaptation criterion consists of two parts: that resolved on the coarse mesh, and that which is not resolved and so is passively advected on the coarse mesh. This combination leads to a balance between resolving features controlled by the large-scale dynamics and maintaining fine-scale features.


2009 ◽  
Vol 633 ◽  
pp. 285-309 ◽  
Author(s):  
MATTEO ANTUONO ◽  
ANDREW J. HOGG ◽  
MAURIZIO BROCCHINI

The motion of an initially quiescent shallow layer of fluid within an impulsively tilted flume is modelled using the nonlinear shallow water equations. Analytical solutions for the two-dimensional flow are constructed using the method of characteristics and, in regions where neither of the characteristic variables is constant, by adopting hodograph variables and using the Riemann construction for the solution. These solutions reveal that the motion is strongly influenced by the impermeable endwalls of the flume. They show that discontinuous solutions emerge after some period following the initiation of the flow and that for sufficiently long flumes there is a moving interface between wetted and dry regions. Using the hodograph variables we are able to track the evolution of the flow analytically. After the discontinuities develop, we also calculate the velocity and height fields by using jump conditions to express conservation of mass and momentum across the shock and thus we show how the hydraulic jump moves within the domain and how its magnitude grows. In addition to providing the behaviour of the flow in this physical scenario, this unsteady solution also provides an important test case for numerical algorithms designed to integrate the shallow water equations.


Author(s):  
Xiao-Hua Zhu ◽  
Xiao-Hua Zhu ◽  
Ze-Nan Zhu ◽  
Ze-Nan Zhu ◽  
Xinyu Guo ◽  
...  

A coastal acoustic tomography (CAT) experiment for mapping the tidal currents in the Zhitouyang Bay was successfully carried out with seven acoustic stations during July 12 to 13, 2009. The horizontal distributions of tidal current in the tomography domain are calculated by the inverse analysis in which the travel time differences for sound traveling reciprocally are used as data. Spatial mean amplitude ratios M2 : M4 : M6 are 1.00 : 0.15 : 0.11. The shallow-water equations are used to analyze the generation mechanisms of M4 and M6. In the deep area, velocity amplitudes of M4 measured by CAT agree well with those of M4 predicted by the advection terms in the shallow water equations, indicating that M4 in the deep area where water depths are larger than 60 m is predominantly generated by the advection terms. M6 measured by CAT and M6 predicted by the nonlinear quadratic bottom friction terms agree well in the area where water depths are less than 20 m, indicating that friction mechanisms are predominant for generating M6 in the shallow area. Dynamic analysis of the residual currents using the tidally averaged momentum equation shows that spatial mean values of the horizontal pressure gradient due to residual sea level and of the advection of residual currents together contribute about 75% of the spatial mean values of the advection by the tidal currents, indicating that residual currents in this bay are induced mainly by the nonlinear effects of tidal currents.


Sign in / Sign up

Export Citation Format

Share Document