height fields
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 16)

H-INDEX

20
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Valerio Lembo ◽  
Federico Fabiano ◽  
Vera Melinda Galfi ◽  
Rune Graversen ◽  
Valerio Lucarini ◽  
...  

Abstract. The extratropical meridional energy transport in the atmosphere is fundamentally intermittent in nature, having extremes large enough to affect the net seasonal transport. Here, we investigate how these extreme transports are associated with the dynamics of the atmosphere at multiple scales, from planetary to synoptic. We use ERA5 reanalysis data to perform a wavenumber decomposition of meridional energy transport in the Northern Hemisphere mid-latitudes during winter and summer. We then relate extreme transport events to atmospheric circulation anomalies and dominant weather regimes, identified by clustering 500 hPa geopotential height fields. In general, planetary-scale waves determine the strength and meridional position of the synoptic-scale baroclinic activity with their phase and amplitude, but important differences emerge between seasons. During winter, large wavenumbers (k = 2 − 3) are key drivers of the meridional energy transport extremes, and planetary and synoptic-scale transport extremes virtually never co-occur. In summer, extremes are associated with higher wavenumbers (k = 4 − 6), identified as synoptic-scale motions. We link these waves and the transport extremes to recent results on exceptionally strong and persistent co-occurring summertime heat waves across the Northern Hemisphere mid-latitudes. We show that these events are typical, in terms of dominant regime patterns associated with extremely strong meridional energy transports.


2021 ◽  
pp. 1-32

Abstract Anticyclonic anomaly over Ural, or Ural High (UH), has recently received much attention as a factor related to weather anomalies across Eurasia. Here we studied how UH affects the occurrence of cold wintertime episodes over Eastern Europe and Northern China. By employing three methods to identify UH, we found that a method based on the sea level pressure anomaly captures a stronger cooling signal over Eastern Europe and this method includes non-blocking cases associated with low-level anticyclones that do not affect the upper troposphere. However, under the occurrence of UH, a stronger cooling over Northern China is detected by a method based on 500-hPa geopotential height fields. Cold events over Eastern Europe typically occur when UH formation was associated with a Rossby wave breaking in the upper level. Our results show that the horizontal temperature advection plays an important role in formation of cold episodes both in Eastern Europe and Northern China. The advection is balanced by diabatic processes, which show an opposite sign to the temperature advection in both regions. Also adiabatic warming contributes to balancing the advection in Northern China. We find that the exact location of the positive SLP anomaly during UH is the most important factor controlling whether or not Eastern Europe or Northern China will experience a cold episode. If the positive SLP anomaly develops more northwest than usual, Eastern Europe will experience a cold episode. When the anomaly moves eastward, Northern China will be cold.


2021 ◽  
Author(s):  
Antoine Blanc ◽  
Juliette Blanchet ◽  
Jean-Dominique Creutin

Abstract. Detecting trends in regional large-scale circulation (LSC) is an important challenge as LSC is a key driver of local weather conditions. In this work, we investigate the past evolution of Western Europe LSC based on the 500 hPa geopotential height fields from 20CRv2c (1851–2010), ERA20C (1900–2010) and ERA5 (1950–2010) reanalyses. We focus on the evolution of large-scale circulation characteristics using three atmospheric descriptors that are based on analogy – characterizing the geopotential shape stationarity and how well a geopotential shape is reproduced in the climatology – together with a non-analogy descriptor accounting for the intensity of the centers of action. These descriptors were shown relevant to study precipitation extremes and variability in the Northwestern Alps in previous studies. Even though LSC characteristics and trends are consistent among the three reanalyses after 1950, we find major differences between 20CRv2c and ERA20C from 1900 to 1950 in accordance with previous studies. Notably, ERA20C produces flatter geopotential shapes in the beginning of the 20th century and shows a reinforcement of the meridional pressure gradient that is not observed in 20CRv2c. We then focus on the recent changes in LSC from 1950 to 2019 using ERA5. We combine the four atmospheric descriptors with an existing weather pattern classification to study the recent changes in the main atmospheric influences over France and Western Europe (Atlantic, Mediterranean, Northeast, Anticyclonic). We show that little changes are found in Northeast circulations. However, we show that Atlantic circulations (zonal flows) tend to become more similar to known Atlantic circulations in winter. Anticyclonic conditions tend to become more stationary in summer – a change that can potentially affect summer heatwaves. Furthermore, Mediterranean circulations tend to become more stationary, more similar to known Mediterranean circulations and associated with stronger centers of action in autumn, which could have implications for autumn extreme precipitation in the Mediterranean-influenced regions of the Southwestern Alps.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1090
Author(s):  
Raquel Fernandes ◽  
Marcelo Fragoso

Heatwaves are an extreme meteorological event in which affected populations may also be exposed to deteriorated air quality conditions due to the increase in air pollutant concentrations, such as PM10 (particulate matter < 10 µg/m3). In order to identify heatwaves (1973–2019) in the region of Faro (Algarve) during the hot season (April–September), the Excess Heat Factor (EHF) index was applied. The Mann–Kendall test revealed an upward trend in three heatwave metrics in Faro, and the trend of accumulated heat load (EHF load) was also positive as would be expected, but its signal was not statistically significant. An inventory of North African dust events (2006–2019) was made, and their simultaneous occurrence with heatwaves was assessed, pointing to only 20% of dust events of the Sahara occurring simultaneously with heatwave days. A cluster analysis was conducted on daily geopotential height fields at 850 hPa level over the 2006–2019 period, and four distinct patterns were identified as the most prominent synoptic circulations promoting both heatwave conditions and North African dust over the Algarve.


Author(s):  
Satoru Kasuga ◽  
Meiji Honda ◽  
Jinro Ukita ◽  
Shozo Yamane ◽  
Hiroaki Kawase ◽  
...  

AbstractWe propose a new scheme based on geopotential height fields to detect cutoff lows starting in the preexisting trough stage. The intensity and scale derived from the proposed scheme will allow for a better understanding of the cutoff low life cycle. These cutoff lows often accompany mesoscale disturbances, causing adverse weather-related events, such as intense torrential rainfall and/or tornadoes. The proposed scheme quantifies the geometric features of a depression from its horizontal height profile. The height slope of a line intersecting the depression bottom and the nearest tangential point (optimal slope) locally indicates the intensity and scale of an isolated depression.The strength of the proposed scheme is that, by removing a local background height slope from a geopotential height field, the cutoff low and its preexisting trough are seamlessly detected as an identical depression. The distribution maps for the detected cutoff lows and preexisting troughs are illustrated along with their intensities, sizes, and local background flows estimated from snapshot height fields. We conducted climatological comparisons of cutoff lows to determine the utility of the proposed scheme.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 745
Author(s):  
Jing Luo ◽  
Jianqiu Zheng ◽  
Lei Zhong ◽  
Chun Zhao ◽  
Yunfei Fu

This study analyzed the diurnal variations of summer deep convective precipitation (DCP) over the Qinghai-Tibet Plateau (QTP) and its southern region. The results show that DCP is the main type of precipitation over the QTP. The precipitation intensity of DCP is less than 3 mm/h over the QTP, which is much lower than the precipitation intensity in non-plateau regions. DCP over non-plateau regions is related to the convergence of surface wind, but that over the QTP are not. The mean maximum echo of DCP is less than 26 dBZ over the QTP, less than in non-plateau regions. The mean altitude of maximum echo decreases from about 7.5 km in the western plateau to 6 km in the eastern plateau, while it reaches only 4.5–5 km in the non-plateau region. The DCP frequency peak occurs in the afternoon in the major area of the QTP including valley region. The peak time of DCP frequency is different from its intensity, and the former is 1 to 2 h earlier. Study also indicates strong diurnal variations in frequency, intensity, and the maximum echo over the QTP, which is consistent with diurnal changes of geopotential height fields of 500 hPa and 200 hPa.


2021 ◽  
Author(s):  
André Seiji Wakate Teruya ◽  
Breno Raphaldini ◽  
Victor Chavez Mayta ◽  
Carlos Frederico Mendonça Raupp ◽  
Pedro Leite da Silva Dias

Abstract. The study of tropical tropospheric disturbances has led to important challenges from both observational and theoretical points of view. In particular, the observed wavenumber-frequency spectrum of tropical oscillations, also known as Wheeler-Kiladis diagram, has helped bridging the gap between observations and the linear theory of equatorial waves. Here we have obtained a similar wavenumber-frequency spectrum for each equatorial wave type by performing a normal mode function (NMF) decomposition of global Era-Interim reanalysis data, with the NMF basis being given by the eigensolutions of the primitive equations in spherical coordinates, linearized around a resting background state. In this methodology, the global multi-level horizontal velocity and geopotential height fields are projected onto the normal mode functions characterized by a vertical mode, a zonal wavenumber, a meridional quantum index and a mode type, namely Rossby, Kelvin, mixed Rossby-gravity and westward and eastward propagating inertio-gravity modes. The horizontal velocity and geopotential height fields associated with each mode type are then reconstructed on the physical space, and the corresponding wavenumber-frequency spectrum is calculated for the 200 hPa zonal wind. The results reveal some expected structures, such as the dominant global-scale Rossby and Kelvin waves constituting the intraseasonal frequency associated with the Madden-Julian Oscillation. On the other hand, some unexpected features such as westward propagating Kelvin waves and eastward propagating westward inertio-gravity waves are also revealed by our observed 200 hPa zonal wind spectrum. These intriguing behaviours represent a large departure from the linear equatorial wave theory and can be a result of strong nonlinearities in the wave dynamics.


2021 ◽  
Vol 17 (2) ◽  
pp. 653-673
Author(s):  
Antoine Gagnon-Poiré ◽  
Pierre Brigode ◽  
Pierre Francus ◽  
David Fortin ◽  
Patrick Lajeunesse ◽  
...  

Abstract. Analysis of short sediment cores collected in Grand Lake, Labrador, revealed that this lake is an excellent candidate for the preservation of a laminated sediment record. The great depth of Grand Lake, the availability of fine sediments along its tributaries and its important seasonal river inflow have favoured the formation of a 160-year-long clastic varved sequence. Each varve represents 1 hydrological year. Varve formation is mainly related to spring discharge conditions with contributions from summer and autumn rainfall events. The statistically significant relation between varve parameters and the Naskaupi River discharge observations provided the opportunity to develop local hydrological reconstructions beyond the instrumental period. The combined detrital layer thickness and the particle size (99th percentile) series extracted from each varve yield the strongest correlations with instrumental data (r=0.68 and 0.75 respectively) and have been used to reconstruct the respective Naskaupi River mean and maximum annual discharges over the 1856–2016 period. The reconstructed Q-mean series suggest that high Q-mean years occurred during the 1920–1960 period, and a slight decrease in Q-mean took place during the second half of the 20th century. Independent reconstructions based on rainfall–runoff modelling of the watershed from historical reanalysis of global geopotential height fields display a significant correlation with the reconstructed Naskaupi River discharge based on varve physical parameters. The Grand Lake varved sequence contains a regional hydrological signal, as suggested by the statistically significant relation between the combined detrital layer thickness series and the observed Labrador region Q-mean series extracted from five watersheds of different sizes.


2021 ◽  
Author(s):  
Peter Hoffmann ◽  
Jascha Lehmann ◽  
Bijan Fallah ◽  
Fred Hattermann

&lt;p&gt;Changes in weather persistence are of particular concern in the context of climate change as periods of longer persistence can reinforce weather extremes. In our study we apply structural image recognition methods to global ERA5 reanalysis data to identify when, where and how long isolines of atmospheric geopotential height fields run in similar tracks. We identify regions and episodes around the world in which, retrospectively, unusually long-lasting weather patterns repeatedly occurred. Concerning the temperature and precipitation meteorological fields, we derive a connection between the occurrence of weather persistence and hydro-climatic extreme events.&lt;/p&gt;&lt;p&gt;Based on our new method we find that weather persistence has been particularly increasing in Northern Hemisphere mid-latitudes in summer confirming earlier studies. Here, highly populated regions like Central Europe have experienced long-term increases in persistent weather conditions of up to 4-5% between 1981 and 2019 amplifying the risk of prolonged heat waves and droughts. Further, we show that climate models tend to have difficulties in capturing the dynamics of weather persistence and thus may severely underestimate the frequency and magnitude of future extremes events in their climate projections.&lt;/p&gt;


2021 ◽  
Author(s):  
Antoine Blanc ◽  
Juliette Blanchet ◽  
Jean-Dominique Creutin

&lt;p&gt;This work analyses the link between Western Europe large-scale circulation and precipitation variability in the Northern French Alps from 1950 to 2017. We consider simple descriptors characterizing the daily 500hPa geopotential height fields. They are the Maximum Pressure Difference - representing the range of geopotential heights over Western Europe -, and the singularity - representing the mean distance between a geopotential shape and its closest analogs, i.e. the way this geopotential shape is reproduced in the climatology. These descriptors are compared to the occurrence of different atmospheric influences - Atlantic, Mediterranean, Northeast, Anticyclonic - and to the leading mode of large-scale circulation variability over Europe - the North Atlantic Oscillation (NAO) - for explaining precipitation variability in the Is&amp;#232;re River catchment from one day to 10 years. We show that the Maximum Pressure Difference and the singularity of geopotential shapes explain a significant part of precipitation variability in the Northern French Alps from 10 days to 10 years, especially in winter (correlation values of 0.7). These descriptors provide much better performance than NAO and the same performance as the occurrence of the Atlantic influence, which is the best performing atmospheric influence. This means that simple characteristics of large-scale circulation - that are easy to implement - provide as much information as weather pattern classification to explain precipitation variability in the Northern French Alps.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document