scholarly journals Review of wind-wave coupling models for large-eddy simulation of the marine atmospheric boundary layer

Author(s):  
Georgios Deskos ◽  
Joseph C. Y. Lee ◽  
Caroline Draxl ◽  
Michael A. Sprague

AbstractWe present a review of existing wind-wave coupling models and parameterizations used for large-eddy simulation of the marine atmospheric boundary layer. The models are classified into two main categories: (i) the wave phaseaveraged, sea-surface-roughness models and (ii) the wave phase-resolved models. Both categories are discussed from their implementation, validity, and computational efficiency viewpoints with emphasis given on their applicability in offshore wind energy problems. In addition to the various models discussed, a review of laboratory-scale and field-measurement databases are presented thereafter. The majority of the presented data have been gathered over many decades of studying air-sea interaction phenomena, with the most recent ones compiled to reflect an offshore wind energy perspective. Both provide valuable data for model validation. Finally, we also discuss the modeling knowledge gaps and computational challenges ahead.

2018 ◽  
Author(s):  
Micah Sandusky ◽  
Rey DeLeon ◽  
Inanc Senocak

Offshore wind turbines are mega structures that span a critical section of the lowest part of atmospheric boundary layer while experiencing significant wind shear. A detailed knowledge of the wind field through a wind farm as part of the atmospheric boundary layer is essential to design efficient farm layouts and estimate power production for grid integration. To address these needs, we present a micro-scale wind prediction model based on a large-eddy simulation paradigm. We consider actuator disk models with and without rotation to simulate the influence of turbines on the wind field and apply our computational capability to the well-known Horns Rev offshore wind farm in Denmark to estimate power production. Instead of using manufacturers power curve to estimate power production, we propose an alternative approach based on the control volume analysis of kinetic energy conservation around turbines.


Author(s):  
Yansen Wang ◽  
Michael J. Benson

Abstract In this article we describe the details of an ABLE-LBM (Atmospheric Boundary Layer Environment-Lattice Boltzmann Model) validation study for urban building array turbulent flow simulations. The ABLE-LBM large-eddy simulation results were compared with a set of 3D magnetic resonance image (MRI) velocimetry data. The ABLE-LBM simulations used the same building layout and Reynolds numbers operated in the laboratory water channel. The building set-up was an evenly spaced orthogonal array of cubic buildings (height = H) with a central tall building (height = 3H) in the second row. Two building orientations, angled with 0°and 45° wind directions, were simulated with ABLE-LBM. The model produced horizontal and vertical fields of time-averaged velocity fields and compared well with the experimental results. The model also produced urban canyon flows and vortices at front and lee sides and over building tops that were similar in strength and location to the laboratory studies. The turbulent kinetic energy associated with these two wind directions were also presented in this simulation study. It is shown that the building array arrangement, especially the tall building, has a great effect on turbulent wind fields. There is a Karman vortex street on the lee side of the tall building. High turbulent intensity areas are associated with the vortex shedding motions at building edges. In addition, the wind direction is a very important factor for turbulent wind and kinetic energy distribution. This validation study indicated that ABLE-LBM is a viable simulation model for turbulent atmospheric boundary layer flows in the urban building array. The computational speed of ABLE-LBM using the GPU has shown that real-time LES simulation is realizable for a computational domain with several millions grid points.


Sign in / Sign up

Export Citation Format

Share Document