building array
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 14)

H-INDEX

11
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Kate Huihsuan Chen ◽  
Ting-Chen Yeh ◽  
Yaochieh Chen ◽  
Christopher W. Johnson ◽  
Cheng-Horng Lin ◽  
...  

AbstractExamining continuous seismic data recorded by a dense broadband seismic network throughout Taipei shows for the first time, the nature of seismic noise in this highly populated metropolitan area. Using 140 broadband stations in a 50 km × 69 km area, three different recurring, strong noise signals characterized by dominant frequencies of 2–20 Hz, 0.25–1 Hz, and < 0.2 Hz are explored. At frequencies of 2–20 Hz, the seismic noise exhibits daily and weekly variations, and a quiescence during the Chinese New Year holidays. The largest amplitude occurred at a station located only 400 m from a traffic-roundabout, one of the busiest intersections in Taipei, suggesting a possible correlation between large amplitude and traffic flow. The median daily amplitude for the < 0.2 Hz and 0.2–1.0 Hz frequency bands is mostly synchronized with high similarity between stations, indicating that the sources are persistent oceanic or atmospheric perturbations across a large area. The daily amplitude for the > 2 Hz band, however, is low, indicating a local source that changes on shorter length scales. Human activities responsible for the 2–40 Hz energy in the city, we discovered, are able to produce amplitudes approximately 2 to 1500 times larger than natural sources. Using the building array deployed in TAIPEI 101, the tallest building in Taiwan, we found the small but repetitive ground vibration induced by traffic has considerable effect on the vibration behavior of the high-rise building. This finding urges further investigation not only on the dynamic and continuous interaction between vehicles, roads, and buildings, but also the role of soft sediment on such interaction.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1646
Author(s):  
Lu Wang ◽  
Jing Liu ◽  
Cunyan Jiang ◽  
Biao Li ◽  
Di Song ◽  
...  

Passages between buildings comprise the airflow path through the buildings, and the wind passage is often studied in terms of two buildings located parallel or at a certain angle. From the perspective of urban areas, the wind passage can be considered the series connection of all local wind passages between each row of buildings. Whether the central axis of each local wind passage is collinear or not, the wind passages of the building array can be summarized as distorted and streamlined types. Large-eddy simulations (LESs) are employed to assess the impacts of the above two wind passage types on the airflow and drag characteristics. The mean, unsteady flow fields and the drag distributions are discussed to assess the effects of wind passages types. Span-wise airflow was found in the wake region in the case of distorted wind passages (DWP), whereas the recirculating vortices dominated the wake region for the case of streamlined wind passages (SWP). Span-wise airflow enhanced the mean stream-wise velocity U and span-wise velocity U in the wake region, decreased U in the wind passage region, and increased dispersive stress 〈V˜2〉 and 〈U˜2〉 within the urban canopy and the peak Reynolds stress above the urban canopy. Further, it strengthened the individual drag forces of buildings and the fluctuations of span-wise and stream-wise individual drag forces. The air of DWP penetrated deeper than SWP. These findings provide theory and data support for better design of wind passages between buildings and may serve as a foundation for urban design and planning.


2021 ◽  
pp. 118500
Author(s):  
Michael Pirhalla ◽  
David Heist ◽  
Steven Perry ◽  
Wei Tang ◽  
Lydia Brouwer
Keyword(s):  

2021 ◽  
pp. 103910
Author(s):  
Joaquin P. Moris ◽  
Andrew B. Kennedy ◽  
Joannes J. Westerink

Author(s):  
Naoto Kihara ◽  
Taro Arikawa ◽  
Masashi Watanabe ◽  
Hideki Kaida ◽  
Fumiya Murase ◽  
...  

The devastating damage to buildings and infrastructure caused by the 2011 Tohoku-oki earthquake and tsunami highlighted the importance of evaluating tsunami impacts in areas at risk of tsunami inundation for disaster prevention and mitigation. Evaluation technologies have been vigorously researched and developed over the past decade. A wide variety of numerical models exist that can potentially be applied to evaluate tsunami impacts. Furthermore, several either theoretical or empirical models to evaluate tsunami impacts, such as evaluation models of debris impact force and tsunami wave pressure, have been proposed. To validate these numerical and evaluation models, both experimental and theoretical benchmark tests have been conducted (e.g., Horrillo et al., 2015). Most of these tests have been conducted to validate models of tsunami generation, propagation, and inundation. However, the number of benchmark tests to validate tsunami loads are limited, and especially, those for complex terrains are rare. In this study, as a benchmark test to validate modeling of tsunami inundation and wave pressure, hydraulic experiments of tsunami inundations were conducted over a seaside area model, in which building arrays were installed. The inundation depth, velocity, and pressure were numerically predicted for the condition of the benchmark test, and then compared with the measured data for validation.


Author(s):  
Yansen Wang ◽  
Michael J. Benson

Abstract In this article we describe the details of an ABLE-LBM (Atmospheric Boundary Layer Environment-Lattice Boltzmann Model) validation study for urban building array turbulent flow simulations. The ABLE-LBM large-eddy simulation results were compared with a set of 3D magnetic resonance image (MRI) velocimetry data. The ABLE-LBM simulations used the same building layout and Reynolds numbers operated in the laboratory water channel. The building set-up was an evenly spaced orthogonal array of cubic buildings (height = H) with a central tall building (height = 3H) in the second row. Two building orientations, angled with 0°and 45° wind directions, were simulated with ABLE-LBM. The model produced horizontal and vertical fields of time-averaged velocity fields and compared well with the experimental results. The model also produced urban canyon flows and vortices at front and lee sides and over building tops that were similar in strength and location to the laboratory studies. The turbulent kinetic energy associated with these two wind directions were also presented in this simulation study. It is shown that the building array arrangement, especially the tall building, has a great effect on turbulent wind fields. There is a Karman vortex street on the lee side of the tall building. High turbulent intensity areas are associated with the vortex shedding motions at building edges. In addition, the wind direction is a very important factor for turbulent wind and kinetic energy distribution. This validation study indicated that ABLE-LBM is a viable simulation model for turbulent atmospheric boundary layer flows in the urban building array. The computational speed of ABLE-LBM using the GPU has shown that real-time LES simulation is realizable for a computational domain with several millions grid points.


Sign in / Sign up

Export Citation Format

Share Document