scholarly journals A Central Indian Ocean Mode and Heavy Precipitation during the Indian Summer Monsoon

2017 ◽  
Vol 30 (6) ◽  
pp. 2055-2067 ◽  
Author(s):  
Lei Zhou ◽  
Raghu Murtugudde ◽  
Dake Chen ◽  
Youmin Tang

A central Indian Ocean (CIO) mode is found to play a critical role in driving the heavy precipitation during the Indian summer monsoon (ISM). It is typically denoted with a combination of intraseasonal sea surface temperature (SST) anomalies and intraseasonal wind anomalies over the central Indian Ocean, and it preserves the mechanistic links among various dynamic and thermodynamic fields. Like a T junction, it controls the propagation direction of the intraseasonal variabilities (ISVs) originating in the western Indian Ocean. During the ISM, the CIO mode creates an environment favorable for the northward-propagating mesoscale variabilities. These results unveil the relation between the subseasonal monsoonal precipitation and the CIO mode in the ocean–atmosphere system in the Indian Ocean. The identification of the CIO mode deepens our understanding of the coupled monsoon system and brightens the prospects for better simulation and prediction of monsoonal precipitation in the affected countries.

2018 ◽  
Vol 123 (1) ◽  
pp. 58-72 ◽  
Author(s):  
Lei Zhou ◽  
Raghu Murtugudde ◽  
Richard B. Neale ◽  
Markus Jochum

2007 ◽  
Vol 20 (10) ◽  
pp. 2147-2164 ◽  
Author(s):  
Renguang Wu ◽  
Ben P. Kirtman

Abstract The biennial variability is a large component of year-to-year variations in the Indian summer monsoon (ISM). Previous studies have shown that El Niño–Southern Oscillation (ENSO) plays an important role in the biennial variability of the ISM. The present study investigates the role of the Indian Ocean in the biennial transition of the ISM when the Pacific ENSO is absent. The influence of the Indian and Pacific Oceans on the biennial transition between the ISM and the Australian summer monsoon (ASM) is also examined. Controlled numerical experiments with a coupled general circulation model (CGCM) are used to address the above two issues. The CGCM captures the in-phase ISM to ASM transition (i.e., a wet ISM followed by a wet ASM or a dry ISM followed by a dry ASM) and the out-of-phase ASM to ISM transition (i.e., a wet ASM followed by a dry ISM or a dry ASM followed by a wet ISM). These transitions are more frequent than the out-of-phase ISM to ASM transition and the in-phase ASM to ISM transition in the coupled model, consistent with observations. The results of controlled coupled model experiments indicate that both the Indian and Pacific Ocean air–sea coupling are important for properly simulating the biennial transition between the ISM and ASM in the CGCM. The biennial transition of the ISM can occur through local air–sea interactions in the north Indian Ocean when the Pacific ENSO is suppressed. The local sea surface temperature (SST) anomalies induce the Indian monsoon transition through low-level moisture convergence. Surface evaporation anomalies, which are largely controlled by surface wind speed changes, play an important role for SST changes. Different from local air–sea interaction mechanisms proposed in previous studies, the atmospheric feedback is not strong enough to reverse the SST anomalies immediately at the end of the monsoon season. Instead, the reversal of the SST anomalies is accomplished in the spring of the following year, which in turn leads to the Indian monsoon transition.


2021 ◽  
Author(s):  
Annalisa Cherchi ◽  
Pascal Terray ◽  
Satyaban Bishoyi Ratna ◽  
Virna Meccia ◽  
Sooraj K.P.

<p>The Indian Ocean Dipole (IOD) is one of the dominant modes of variability of the tropical Indian Ocean and it has been suggested to have a crucial role in the teleconnection between the Indian summer monsoon and El Nino Southern Oscillation (ENSO). The main ideas at the base of the influence of the IOD on the ENSO-monsoon teleconnection include the possibility that it may strengthen summer rainfall over India, as well as the opposite, and also that it may produce a remote forcing on ENSO itself. The Indian Ocean has been experiencing a warming, larger than any other basins, since the 1950s. During these decades, the summer monsoon rainfall over India decreased and the frequency of Indian Ocean Dipole (IOD) events increased. In the future the IOD is projected to further increase in frequency and amplitude with mean conditions mimicking the characteristics of its positive phase. Still, state of the art global climate models have large biases in representing IOD and monsoon mean state and variability, with potential consequences for properties and related teleconnections projected in the future. This works collects a review study of the influence of the IOD on the ISM and its relationship with ENSO, as well as new results on IOD projections comparing CMIP5 and CMIP6 models.</p>


Sign in / Sign up

Export Citation Format

Share Document