climate models
Recently Published Documents


TOTAL DOCUMENTS

7459
(FIVE YEARS 2857)

H-INDEX

167
(FIVE YEARS 19)

2022 ◽  
Vol 21 (63) ◽  
pp. 251-270
Author(s):  
anoshiravan ravand ◽  
shahriar khaledi ◽  
davod hasanabadi ◽  
◽  
◽  
...  

2022 ◽  
pp. 1-44

Abstract Atlantic Multidecadal Variability (AMV) impacts temperature, precipitation, and extreme events on both sides of the Atlantic basin. Previous studies with climate models have suggested that when external radiative forcing is held constant, the large-scale ocean and atmosphere circulation are associated with sea-surface temperature anomalies that have similar characteristics to the observed AMV. However, there is an active debate as to whether these internal fluctuations driven by coupled atmosphere-ocean variability remain influential to the AMV on multidecadal timescales in our modern, anthropogenically-forced climate. Here we provide evidence from multiple large ensembles of climate models, paleo reconstructions, and instrumental observations of a growing role for external forcing in the AMV. Prior to 1850, external forcing, primarily from volcanoes, explains about one third of AMV variance. Between 1850 and 1950, there is a transitional period, where external forcing explains half of AMV variance, but volcanic forcing only accounts for about 10% of that. After 1950, external forcing explains three quarters of AMV variance. That is, the role for external forcing in the AMV grows as the variations in external forcing grow, even if the forcing is from different sources. When forcing is relatively stable, as in earlier modeling studies, a higher percentage of AMV variations are internally generated.


2022 ◽  
Author(s):  
Jinghua Xiong ◽  
Shenglian Guo ◽  
Jie Chen ◽  
Jiabo Yin

Abstract. The “dry gets drier and wet gets wetter” (DDWW) paradigm has been widely used to summarize the expected trends of the global hydrologic cycle under climate change. However, the paradigm is challenged over land due to different measures and datasets, and is still unexplored from the perspective of terrestrial water storage anomaly (TWSA). Considering the essential role of TWSA in wetting and drying of the land surface, here we built upon a large ensemble of TWSA datasets including satellite-based products, global hydrological models, land surface models, and global climate models to evaluate the DDWW hypothesis during the historical (1985–2014) and future (2071–2100) periods under various scenarios. We find that 27.1 % of global land confirms the DDWW paradigm, while 22.4 % of the area shows the opposite pattern during the historical period. In the future, the DDWW paradigm is still challenged with the percentage supporting the pattern lower than 20 %, and both the DDWW-validated and DDWW-opposed proportion increase along with the intensification of emission scenarios. Our findings will provide insights and implications for global wetting and drying trends from the perspective of TWSA under climate change.


2022 ◽  
Vol 15 (1) ◽  
pp. 269-289
Author(s):  
Eduardo Moreno-Chamarro ◽  
Louis-Philippe Caron ◽  
Saskia Loosveldt Tomas ◽  
Javier Vegas-Regidor ◽  
Oliver Gutjahr ◽  
...  

Abstract. We examine the influence of increased resolution on four long-standing biases using five different climate models developed within the PRIMAVERA project. The biases are the warm eastern tropical oceans, the double Intertropical Convergence Zone (ITCZ), the warm Southern Ocean, and the cold North Atlantic. Atmosphere resolution increases from ∼100–200 to ∼25–50 km, and ocean resolution increases from ∼1∘ (eddy-parametrized) to ∼0.25∘ (eddy-present). For one model, ocean resolution also reaches 1/12∘ (eddy-rich). The ensemble mean and individual fully coupled general circulation models and their atmosphere-only versions are compared with satellite observations and the ERA5 reanalysis over the period 1980–2014. The four studied biases appear in all the low-resolution coupled models to some extent, although the Southern Ocean warm bias is the least persistent across individual models. In the ensemble mean, increased resolution reduces the surface warm bias and the associated cloud cover and precipitation biases over the eastern tropical oceans, particularly over the tropical South Atlantic. Linked to this and to the improvement in the precipitation distribution over the western tropical Pacific, the double-ITCZ bias is also reduced with increased resolution. The Southern Ocean warm bias increases or remains unchanged at higher resolution, with small reductions in the regional cloud cover and net cloud radiative effect biases. The North Atlantic cold bias is also reduced at higher resolution, albeit at the expense of a new warm bias that emerges in the Labrador Sea related to excessive ocean deep mixing in the region, especially in the ORCA025 ocean model. Overall, the impact of increased resolution on the surface temperature biases is model-dependent in the coupled models. In the atmosphere-only models, increased resolution leads to very modest or no reduction in the studied biases. Thus, both the coupled and atmosphere-only models still show large biases in tropical precipitation and cloud cover, and in midlatitude zonal winds at higher resolutions, with little change in their global biases for temperature, precipitation, cloud cover, and net cloud radiative effect. Our analysis finds no clear reductions in the studied biases due to the increase in atmosphere resolution up to 25–50 km, in ocean resolution up to 0.25∘, or in both. Our study thus adds to evidence that further improved model physics, tuning, and even finer resolutions might be necessary.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
N. N. Ridder ◽  
A. M. Ukkola ◽  
A. J. Pitman ◽  
S. E. Perkins-Kirkpatrick

AbstractWhile compound weather and climate events (CEs) can lead to significant socioeconomic consequences, their response to climate change is mostly unexplored. We report the first multi-model assessment of future changes in return periods for the co-occurrence of heatwaves and drought, and extreme winds and precipitation based on the Coupled Model Intercomparison Project (CMIP6) and three emission scenarios. Extreme winds and precipitation CEs occur more frequently in many regions, particularly under higher emissions. Heatwaves and drought occur more frequently everywhere under all emission scenarios examined. For each CMIP6 model, we derive a skill score for simulating CEs. Models with higher skill in simulating historical CEs project smaller increases in the number of heatwaves and drought in Eurasia, but larger numbers of strong winds and heavy precipitation CEs everywhere for all emission scenarios. This result is partly masked if the whole CMIP6 ensemble is used, pointing to the considerable value in further improvements in climate models.


2022 ◽  
Author(s):  
Louise Busschaert ◽  
Shannon de Roos ◽  
Wim Thiery ◽  
Dirk Raes ◽  
Gabriëlle J. M. De Lannoy

Abstract. Global soil water availability is challenged by the effects of climate change and a growing population. On average 70 % of freshwater extraction is attributed to agriculture, and the demand is increasing. In this study, the effects of climate change on the evolution of the irrigation water requirement to sustain current crop productivity are assessed by using the FAO crop growth model AquaCrop version 6.1. The model is run at 0.5° lat × 0.5° lon resolution over the European mainland, assuming a general C3-type of crop, and forced by climate input data from the Inter-Sectoral Impact Model Intercomparison Project phase three (ISIMIP3). First, the performance of AquaCrop surface soil moisture (SSM) simulations using historical meteorological input from two ISIMIP3 forcing datasets is evaluated with satellite-based SSM estimates. When driven by ISIMIP3a reanalysis meteorology for the years 2011–2016, daily simulated SSM values have an unbiased root-mean-square difference of 0.08 and 0.06 m3m−3 with SSM retrievals from the Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) missions, respectively. When forced with ISIMIP3b meteorology from five Global Climate Models (GCM) for the years 2011–2020, the historical simulated SSM climatology closely agrees with the climatology of the reanalysis-driven AquaCrop SSM climatology as well as the satellite-based SSM climatologies. Second, the evaluated AquaCrop model is run to quantify the future irrigation requirement, for an ensemble of five GCMs and three different emission scenarios. The simulated net irrigation requirement (Inet) of the three summer months for a near and far future climate period (2031–2060 and 2071–2100) is compared to the baseline period of 1985–2014, to assess changes in the mean and interannual variability of the irrigation demand. Averaged over the continent and the model ensemble, the far future Inet is expected to increase by 67 mm year–1 (+30 %) under a high emission scenario Shared Socioeconomic Pathway (SSP) 3-7.0. Central and southern Europe are the most impacted with larger Inet increases. The interannual variability of Inet is likely to increase in northern and central Europe, whereas the variability is expected to decrease in southern regions. Under a high mitigation scenario (SSP1-2.6), the increase in Inet will stabilize around 40 mm year–1 towards the end of the century and interannual variability will still increase but to a smaller extent. The results emphasize a large uncertainty in the Inet projected by various GCMs.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Manish K. Joshi ◽  
Archana Rai ◽  
Ashwini Kulkarni

AbstractIn the present study, a sea surface temperature-based index named global-scale interdecadal variability (GIV) encompassing the combined variability of Atlantic multidecadal oscillation (AMO) and interdecadal Pacific oscillation (IPO) has been proposed. The warm phase of GIV exhibits a “cold AMO-like” pattern in the Atlantic basin and a “warm IPO-like” pattern in the Pacific basin. About 84% (R ~−0.914) of Sahelian and 42% (R ~−0.647) of Indian rainfall’s temporal variance is attributed to GIV, showing substantial improvement compared to the variance explained by AMO and IPO individually. The physical mechanism for GIV-rainfall teleconnection is related to a modification of the Walker circulation. Although there is a substantial degree of uncertainty in the current generation of state-of-the-art climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), some still replicate the observed GIV’s spatial structure, its teleconnection, and associated physical mechanism. The results presented herein advance our knowledge about rainfall’s interdecadal variability and have imperative ramifications for developing skillful decadal predictions.


2022 ◽  
Author(s):  
Felix Ploeger ◽  
Hella Garny

Abstract. Despite the expected opposite effects of ozone recovery, the stratospheric Brewer-Dobson circulation (BDC) has been found to weaken in the Northern hemisphere (NH) relative to the Southern hemisphere (SH) in recent decades, inducing substantial effects on chemical composition. We investigate hemispheric asymmetries in BDC changes since about 2000 in simulations with the transport model CLaMS driven with different reanalyses (ERA5, ERA-Interim, JRA-55, MERRA-2) and contrast those to a suite of free-running climate model simulations. We find that age of air increases robustly in the NH stratosphere relative to the SH in all reanalyses considered. Related nitrous oxide changes agree well between reanalysis-driven simulations and satellite measurements, providing observational evidence for the hemispheric asymmetry in BDC changes. Residual circulation metrics further show that the composition changes are caused by structural BDC changes related to an upward shift and strengthening of the deep BDC branch, resulting in longer transit times, and a downward shift and weakening shallow branch in the NH relative to the SH. All reanalyses agree on this mechanism. Although climate model simulations show that ozone recovery will lead to overall reduced circulation and age of air trends, the hemispherically asymmetric signal in circulation trends is small compared to internal variability. Therefore, the observed circulation trends over the recent past are not in contradiction to expectations from climate models. Furthermore, the hemispheric asymmetry in BDC trends imprints on the composition of the lower stratosphere and the signal might propagate into the troposphere, potentially affecting composition down to the surface.


2022 ◽  
Vol 15 (1) ◽  
pp. 173-197
Author(s):  
Manuel C. Almeida ◽  
Yurii Shevchuk ◽  
Georgiy Kirillin ◽  
Pedro M. M. Soares ◽  
Rita M. Cardoso ◽  
...  

Abstract. The complexity of the state-of-the-art climate models requires high computational resources and imposes rather simplified parameterization of inland waters. The effect of lakes and reservoirs on the local and regional climate is commonly parameterized in regional or global climate modeling as a function of surface water temperature estimated by atmosphere-coupled one-dimensional lake models. The latter typically neglect one of the major transport mechanisms specific to artificial reservoirs: heat and mass advection due to inflows and outflows. Incorporation of these essentially two-dimensional processes into lake parameterizations requires a trade-off between computational efficiency and physical soundness, which is addressed in this study. We evaluated the performance of the two most used lake parameterization schemes and a machine-learning approach on high-resolution historical water temperature records from 24 reservoirs. Simulations were also performed at both variable and constant water level to explore the thermal structure differences between lakes and reservoirs. Our results highlight the need to include anthropogenic inflow and outflow controls in regional and global climate models. Our findings also highlight the efficiency of the machine-learning approach, which may overperform process-based physical models in both accuracy and computational requirements if applied to reservoirs with long-term observations available. Overall, results suggest that the combined use of process-based physical models and machine-learning models will considerably improve the modeling of air–lake heat and moisture fluxes. A relationship between mean water retention times and the importance of inflows and outflows is established: reservoirs with a retention time shorter than ∼ 100 d, if simulated without inflow and outflow effects, tend to exhibit a statistically significant deviation in the computed surface temperatures regardless of their morphological characteristics.


Author(s):  
Mark D. Zelinka ◽  
Stephen A. Klein ◽  
Yi Qin ◽  
Timothy A. Myers

Sign in / Sign up

Export Citation Format

Share Document