scholarly journals Role of SST over the Indian Ocean in Influencing the Intraseasonal Variability of the Indian Summer Monsoon

2007 ◽  
Vol 85 (3) ◽  
pp. 349-358 ◽  
Author(s):  
Mathew ROXY ◽  
Youichi TANIMOTO
2011 ◽  
Vol 24 (12) ◽  
pp. 2915-2930 ◽  
Author(s):  
Deepthi Achuthavarier ◽  
V. Krishnamurthy

Abstract Three regionally coupled experiments are conducted to examine the role of Indian and Pacific sea surface temperature (SST) in Indian summer monsoon intraseasonal variability using the National Centers for Environmental Prediction’s Climate Forecast System, a coupled general circulation model. Regional coupling is employed by prescribing daily mean or climatological SST in either the Indian or the Pacific basin while allowing full coupling elsewhere. The results are compared with a fully coupled control simulation. The intraseasonal modes are isolated by applying multichannel singular spectrum analysis on the daily precipitation anomalies. It is found that the amplitude of the northeastward-propagating mode is weaker when the air–sea interaction is suppressed in the Indian Ocean. The intraseasonal mode is not resolved clearly when the Indian Ocean SST is reduced to daily climatology. Intraseasonal composites of low-level zonal wind, latent heat flux, downward shortwave radiation, and SST provide a picture consistent with the proposed mechanisms of air–sea interaction for the northward propagation. The Pacific SST variability does not seem to be critical for the existence of this mode. The northwestward-propagating mode is obtained in the cases where the Indian Ocean was prescribed by daily mean or daily climatological SST. Intraseasonal SST composites corresponding to this mode are weak.


2007 ◽  
Vol 20 (10) ◽  
pp. 2147-2164 ◽  
Author(s):  
Renguang Wu ◽  
Ben P. Kirtman

Abstract The biennial variability is a large component of year-to-year variations in the Indian summer monsoon (ISM). Previous studies have shown that El Niño–Southern Oscillation (ENSO) plays an important role in the biennial variability of the ISM. The present study investigates the role of the Indian Ocean in the biennial transition of the ISM when the Pacific ENSO is absent. The influence of the Indian and Pacific Oceans on the biennial transition between the ISM and the Australian summer monsoon (ASM) is also examined. Controlled numerical experiments with a coupled general circulation model (CGCM) are used to address the above two issues. The CGCM captures the in-phase ISM to ASM transition (i.e., a wet ISM followed by a wet ASM or a dry ISM followed by a dry ASM) and the out-of-phase ASM to ISM transition (i.e., a wet ASM followed by a dry ISM or a dry ASM followed by a wet ISM). These transitions are more frequent than the out-of-phase ISM to ASM transition and the in-phase ASM to ISM transition in the coupled model, consistent with observations. The results of controlled coupled model experiments indicate that both the Indian and Pacific Ocean air–sea coupling are important for properly simulating the biennial transition between the ISM and ASM in the CGCM. The biennial transition of the ISM can occur through local air–sea interactions in the north Indian Ocean when the Pacific ENSO is suppressed. The local sea surface temperature (SST) anomalies induce the Indian monsoon transition through low-level moisture convergence. Surface evaporation anomalies, which are largely controlled by surface wind speed changes, play an important role for SST changes. Different from local air–sea interaction mechanisms proposed in previous studies, the atmospheric feedback is not strong enough to reverse the SST anomalies immediately at the end of the monsoon season. Instead, the reversal of the SST anomalies is accomplished in the spring of the following year, which in turn leads to the Indian monsoon transition.


2009 ◽  
Vol 22 (7) ◽  
pp. 1834-1849 ◽  
Author(s):  
Renguang Wu

Abstract The present study investigates processes for out-of-phase transitions from the Australian summer monsoon (ASM) to the Indian summer monsoon (ISM). Two types of out-of-phase ASM-to-ISM transitions have been identified, depending on the evolution of the Pacific El Niño–Southern Oscillation (ENSO) events. The first type of transition is accompanied by a phase switch of ENSO in boreal spring to early summer. In the second type of transition, ENSO maintains its phase through boreal summer. The direct ENSO forcing plays a primary role for the first type of out-of-phase ASM-to-ISM transition, with complementary roles from the north Indian Ocean sea surface temperature (SST) anomalies that are partly induced by ENSO. The second type of out-of-phase ASM-to-ISM transition involves air–sea interaction processes in the tropical Indian Ocean that generate the north Indian Ocean SST anomalies and contribute to the monsoon transition. The initiation of tropical Indian Ocean air–sea interaction is closely related to ENSO in observations, but could also occur without ENSO according to a coupled general circulation model simulation. Results of numerical simulations substantiate the role of the Indian Ocean air–sea interaction in the out-of-phase ASM-to-ISM transition.


2017 ◽  
Vol 30 (6) ◽  
pp. 2055-2067 ◽  
Author(s):  
Lei Zhou ◽  
Raghu Murtugudde ◽  
Dake Chen ◽  
Youmin Tang

A central Indian Ocean (CIO) mode is found to play a critical role in driving the heavy precipitation during the Indian summer monsoon (ISM). It is typically denoted with a combination of intraseasonal sea surface temperature (SST) anomalies and intraseasonal wind anomalies over the central Indian Ocean, and it preserves the mechanistic links among various dynamic and thermodynamic fields. Like a T junction, it controls the propagation direction of the intraseasonal variabilities (ISVs) originating in the western Indian Ocean. During the ISM, the CIO mode creates an environment favorable for the northward-propagating mesoscale variabilities. These results unveil the relation between the subseasonal monsoonal precipitation and the CIO mode in the ocean–atmosphere system in the Indian Ocean. The identification of the CIO mode deepens our understanding of the coupled monsoon system and brightens the prospects for better simulation and prediction of monsoonal precipitation in the affected countries.


2021 ◽  
Author(s):  
Annalisa Cherchi ◽  
Pascal Terray ◽  
Satyaban Bishoyi Ratna ◽  
Virna Meccia ◽  
Sooraj K.P.

<p>The Indian Ocean Dipole (IOD) is one of the dominant modes of variability of the tropical Indian Ocean and it has been suggested to have a crucial role in the teleconnection between the Indian summer monsoon and El Nino Southern Oscillation (ENSO). The main ideas at the base of the influence of the IOD on the ENSO-monsoon teleconnection include the possibility that it may strengthen summer rainfall over India, as well as the opposite, and also that it may produce a remote forcing on ENSO itself. The Indian Ocean has been experiencing a warming, larger than any other basins, since the 1950s. During these decades, the summer monsoon rainfall over India decreased and the frequency of Indian Ocean Dipole (IOD) events increased. In the future the IOD is projected to further increase in frequency and amplitude with mean conditions mimicking the characteristics of its positive phase. Still, state of the art global climate models have large biases in representing IOD and monsoon mean state and variability, with potential consequences for properties and related teleconnections projected in the future. This works collects a review study of the influence of the IOD on the ISM and its relationship with ENSO, as well as new results on IOD projections comparing CMIP5 and CMIP6 models.</p>


Sign in / Sign up

Export Citation Format

Share Document