Vascular Inflammation, Calf Muscle Oxygen Saturation, and Blood Glucose are Associated With Exercise Pressor Response in Symptomatic Peripheral Artery Disease

Angiology ◽  
2019 ◽  
Vol 70 (8) ◽  
pp. 747-755 ◽  
Author(s):  
Andrew W. Gardner ◽  
Polly S. Montgomery ◽  
Ming Wang ◽  
Chixiang Chen ◽  
Marcos Kuroki ◽  
...  

We determined whether calf muscle oxygen saturation (StO2) and vascular biomarkers of inflammation and oxidative stress were associated with an exercise pressor response during treadmill walking in 179 patients with symptomatic peripheral artery disease (PAD). The exercise pressor response was measured as the change in blood pressure from rest to the end of the first 2-minute treadmill stage (2 mph, 0% grade). There was a wide range in the change in systolic blood pressure (−46 to 50 mm Hg) and in diastolic blood pressure (−23 to 38 mm Hg), with mean increases of 4.3 and 1.4 mm Hg, respectively. In multiple regression analyses, significant predictors of systolic pressure included glucose ( P < .001) and insulin ( P = .039). Significant predictors of diastolic pressure included cultured endothelial cell apoptosis ( P = .019), the percentage drop in exercise calf muscle (StO2; P = .023), high-sensitivity C-reactive protein ( P = .032), and glucose ( P = .033). Higher levels in pro-inflammatory vascular biomarkers, impaired calf muscle StO2 during exercise, and elevated blood glucose were independently associated with greater exercise pressor response in patients with symptomatic PAD. The clinical implication is that exercise and nutritional interventions designed to improve inflammation, microcirculation, and glucose metabolism may also lower blood pressure during exercise in patients with symptomatic PAD.

2019 ◽  
Vol 51 (Supplement) ◽  
pp. 582-583
Author(s):  
Polly Montgomery ◽  
Marcos Kuroki ◽  
Ming Wang ◽  
Danielle Jin-Kwang Kim ◽  
Andrew Gardner

2018 ◽  
Vol 52 ◽  
pp. 147-152 ◽  
Author(s):  
Aluísio Andrade-Lima ◽  
Gabriel G. Cucato ◽  
Wagner J.R. Domingues ◽  
Antônio H. Germano-Soares ◽  
Bruno R. Cavalcante ◽  
...  

Angiology ◽  
2012 ◽  
Vol 64 (5) ◽  
pp. 364-370 ◽  
Author(s):  
Aman Khurana ◽  
Julie A. Stoner ◽  
Thomas L. Whitsett ◽  
Suman Rathbun ◽  
Polly S. Montgomery ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 814
Author(s):  
Zhe Li ◽  
Erin K. Englund ◽  
Michael C. Langham ◽  
Jinchao Feng ◽  
Kebin Jia ◽  
...  

Exercise training can mitigate symptoms of claudication (walking-induced muscle pain) in patients with peripheral artery disease (PAD). One adaptive response enabling this improvement is enhanced muscle oxygen metabolism. To explore this issue, we used arterial-occlusion diffuse optical spectroscopy (AO-DOS) to measure the effects of exercise training on the metabolic rate of oxygen (MRO2) in resting calf muscle. Additionally, venous-occlusion DOS (VO-DOS) and frequency-domain DOS (FD-DOS) were used to measure muscle blood flow (F) and tissue oxygen saturation (StO2), and resting calf muscle oxygen extraction fraction (OEF) was calculated from MRO2, F, and blood hemoglobin. Lastly, the venous/arterial ratio (γ) of blood monitored by FD-DOS was calculated from OEF and StO2. PAD patients who experience claudication (n = 28) were randomly assigned to exercise and control groups. Patients in the exercise group received 3 months of supervised exercise training. Optical measurements were obtained at baseline and at 3 months in both groups. Resting MRO2, OEF, and F, respectively, increased by 30% (12%, 44%) (p < 0.001), 17% (6%, 45%) (p = 0.003), and 7% (0%, 16%) (p = 0.11), after exercise training (median (interquartile range)). The pre-exercise γ was 0.76 (0.61, 0.89); it decreased by 12% (35%, 6%) after exercise training (p = 0.011). Improvement in exercise performance was associated with a correlative increase in resting OEF (R = 0.45, p = 0.02).


2020 ◽  
Vol 52 (7S) ◽  
pp. 222-222
Author(s):  
J. Carter Luck ◽  
Danielle JK Kim ◽  
Cheryl A. Blaha ◽  
Samuel Pai ◽  
Faisal Aziz ◽  
...  

2012 ◽  
Vol 55 (6) ◽  
pp. 1654-1661 ◽  
Author(s):  
Andrew W. Gardner ◽  
Donald E. Parker ◽  
Polly S. Montgomery ◽  
Aman Khurana ◽  
Raphael M. Ritti-Dias ◽  
...  

2018 ◽  
Vol 314 (2) ◽  
pp. H246-H254 ◽  
Author(s):  
Evan A. Kempf ◽  
Korynne S. Rollins ◽  
Tyler D. Hopkins ◽  
Alec L. Butenas ◽  
Joseph M. Santin ◽  
...  

Mechanical and metabolic signals arising during skeletal muscle contraction reflexly increase sympathetic nerve activity and blood pressure (i.e., the exercise pressor reflex). In a rat model of simulated peripheral artery disease in which a femoral artery is chronically (~72 h) ligated, the mechanically sensitive component of the exercise pressor reflex during 1-Hz dynamic contraction is exaggerated compared with that found in normal rats. Whether this is due to an enhanced acute sensitization of mechanoreceptors by metabolites produced during contraction or involves a chronic sensitization of mechanoreceptors is unknown. To investigate this issue, in decerebrate, unanesthetized rats, we tested the hypothesis that the increases in mean arterial blood pressure and renal sympathetic nerve activity during 1-Hz dynamic stretch are larger when evoked from a previously “ligated” hindlimb compared with those evoked from the contralateral “freely perfused” hindlimb. Dynamic stretch provided a mechanical stimulus in the absence of contraction-induced metabolite production that closely replicated the pattern of the mechanical stimulus present during dynamic contraction. We found that the increases in mean arterial blood pressure (freely perfused: 14 ± 1 and ligated: 23 ± 3 mmHg, P = 0.02) and renal sympathetic nerve activity were significantly greater during dynamic stretch of the ligated hindlimb compared with the increases during dynamic stretch of the freely perfused hindlimb. These findings suggest that the exaggerated mechanically sensitive component of the exercise pressor reflex found during dynamic muscle contraction in this rat model of simulated peripheral artery disease involves a chronic sensitizing effect of ligation on muscle mechanoreceptors and cannot be attributed solely to acute contraction-induced metabolite sensitization. NEW & NOTEWORTHY We found that the pressor and sympathetic nerve responses during dynamic stretch were exaggerated in rats with a ligated femoral artery (a model of peripheral artery disease). Our findings provide mechanistic insights into the exaggerated exercise pressor reflex in this model and may have important implications for peripheral artery disease patients.


Sign in / Sign up

Export Citation Format

Share Document