Systems of Double Sampling Plans for Fixed Sample Sizes

1985 ◽  
Vol 34 (3-4) ◽  
pp. 233-236 ◽  
Author(s):  
Anup Majumdar
1992 ◽  
Vol 22 (7) ◽  
pp. 980-983 ◽  
Author(s):  
Richard G. Oderwald ◽  
Elizabeth Jones

Formulas are derived for determining the total number of sample points and the number of volume points for a point, double sample with a ratio of means estimator to replace a point sample and achieve the same variance. A minimum ratio of the cost of measuring volume to the cost of measuring basal area at a point is determined for which the point, double sample will be less costly, in terms of time required to measure points, than the point sample.


2012 ◽  
Vol 102 (5) ◽  
pp. 531-538
Author(s):  
R. Shah ◽  
S.P. Worner ◽  
R.B. Chapman

AbstractPesticide resistance monitoring includes resistance detection and subsequent documentation/ measurement. Resistance detection would require at least one (≥1) resistant individual(s) to be present in a sample to initiate management strategies. Resistance documentation, on the other hand, would attempt to get an estimate of the entire population (≥90%) of the resistant individuals. A computer simulation model was used to compare the efficiency of simple random and systematic sampling plans to detect resistant individuals and to document their frequencies when the resistant individuals were randomly or patchily distributed. A patchy dispersion pattern of resistant individuals influenced the sampling efficiency of systematic sampling plans while the efficiency of random sampling was independent of such patchiness. When resistant individuals were randomly distributed, sample sizes required to detect at least one resistant individual (resistance detection) with a probability of 0.95 were 300 (1%) and 50 (10% and 20%); whereas, when resistant individuals were patchily distributed, using systematic sampling, sample sizes required for such detection were 6000 (1%), 600 (10%) and 300 (20%). Sample sizes of 900 and 400 would be required to detect ≥90% of resistant individuals (resistance documentation) with a probability of 0.95 when resistant individuals were randomly dispersed and present at a frequency of 10% and 20%, respectively; whereas, when resistant individuals were patchily distributed, using systematic sampling, a sample size of 3000 and 1500, respectively, was necessary. Small sample sizes either underestimated or overestimated the resistance frequency. A simple random sampling plan is, therefore, recommended for insecticide resistance detection and subsequent documentation.


2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Yan Li ◽  
Xiaolong Pu ◽  
Dongdong Xiang

The mixed variables-attributes test plans for single acceptance sampling are proposed to protect “good lots” from attributes aspect and to optimize sample sizes from variables aspect. For the single and double mixed plans, exact formulas of the operating characteristic and average sample number are developed for the exponential distribution. Numerical illustrations show that the mixed sampling plans have some advantages over the variables plans or attributes plans alone.


Sign in / Sign up

Export Citation Format

Share Document