Human Performance Benefits of The Automation Transparency Design Principle: Validation and Variation

Author(s):  
Gyrd Skraaning ◽  
Greg A. Jamieson

Objective: Test the automation transparency design principle using a full-scope nuclear power plant simulator. Background: Automation transparency is a long-held human factors design principle espousing that the responsibilities, capabilities, goals, activities, and/or effects of automation should be directly observable in the human–system interface. The anticipated benefits of transparency include more effective reliance, more appropriate trust, better understanding, and greater user satisfaction. Transparency has enjoyed a recent upsurge in use in the context of human interaction with agent-oriented automation. Method: Three full-scope nuclear power plant simulator studies were conducted with licensed operating crews. In the first two experiments, transparency was implemented for interlocks, controllers, limitations, protections, and automatic programs that operate at the local component level of the plant. In the third experiment, procedure automation assumed control of plant operations and was represented in dedicated agent displays. Results: Results from Experiments 1 and 2 appear to validate the human performance benefits of automation transparency for automation at the component level. However, Experiment 3 failed to replicate these findings for automation that assumed control for executing procedural actions. Conclusion: Automation transparency appears to yield expected benefits for component-level automation, but caution is warranted in generalizing the design principle to agent-oriented automation. Application: The automation transparency design principle may offer a powerful means of compensating for the detrimental impacts of hidden automation influence at the component level of complex systems. However, system developers should exercise caution in assuming that the principle extends to agent-oriented automation.

Author(s):  
Shen Yang ◽  
Geng Bo ◽  
Li Dan

According to the research of nuclear power plant human error management, it is found that the traditional human error management are mainly based on the result of human behavior, the event as the point cut of management, there are some drawbacks. In this paper, based on the concept of the human performance management, establish the defensive human error management model, the innovation point is human behavior as the point cut, to reduce the human errors and accomplish a nip in the bud. Based on the model, on the one hand, combined with observation and coach card, to strengthen the human behavior standards expected while acquiring structured behavior data from the nuclear power plant production process; on the other hand, combined with root cause analysis method, obtained structured behavior data from the human factor event, thus forming a human behavior database that show the human performance state picture. According to the data of human behavior, by taking quantitative trending analysis method, the P control chart of observation item and the C control chart of human factor event is set up by Shewhart control chart, to achieve real-time monitoring of the process and result of behavior. At the same time, development Key Performance Indicators timely detection of the worsening trend of human behavior and organizational management. For the human behavior deviation and management issues, carry out the root cause analysis, to take appropriate corrective action or management improvement measures, so as to realize the defense of human error, reduce human factor event probability and improve the performance level of nuclear power plant.


Author(s):  
Ladislav Vesely ◽  
Vaclav Dostal

Accident at Fukushima Dai-Ichi nuclear power plant significantly affected the nuclear industry at time when everybody was expecting the so called nuclear renaissance. There is no question that the accident has at least slowed it down. Research into this accident is taking place all over the world. In this paper we present the findings of research on Fukushima nuclear power plant accident in relation to the Czech Republic. The paper focuses on the analysis of human performance during the accident. Lessons learned from the accident and main human errors are presented. First the brief factors affecting the human performance are discussed. They are followed by the short description of activities on units 1–3. The key human errors in the accident mitigation are then identified. On unit 1 the main error is wrong understanding and operation of isolation condenser. On unit 2 the main errors were unsuccessful depressurization with subsequent delay of coolant injection. On unit 3 the main error is the shutdown of high pressure cooling injection system without first confirming that different means of cooling are available. These errors lead to fuel damage. On unit 1 the fuel damage was probably impossible to prevent, however on unit 2 and 3 it could be probably prevented. The lessons learned for the Czech Republic were presented. They can be summarizes as follows: be sure that plant personnel can and knows how to monitor and operate the crucial plant components, be sure that the procedures on how to fulfill the critical safety functions are available in the symptomatic manner for situations when there is no power available at the plant, train personnel for these situations and have sufficient human resource available for these situations.


2011 ◽  
Vol 102 (11) ◽  
pp. 1008-1011 ◽  
Author(s):  
James E. Delmore ◽  
Darin C. Snyder ◽  
Troy Tranter ◽  
Nick R. Mann

2008 ◽  
Vol 38 (11-12) ◽  
pp. 1028-1037 ◽  
Author(s):  
Paul O’Connor ◽  
Angela O’Dea ◽  
Rhona Flin ◽  
Steve Belton

Sign in / Sign up

Export Citation Format

Share Document