Design of three-strand compact spinning system and numerical flow-field simulation for different structures of air-suction guides and suction inserts

2021 ◽  
pp. 004051752098752
Author(s):  
Murat Demir ◽  
Musa Kilic ◽  
Serdar Sayin ◽  
Zeki Kiral ◽  
Furkan Balduk ◽  
...  

This study aims to design a compact three-strand spinning approach as inspired by the twist and compact spinning. In the design process, auxiliary parts of twist and pneumatic compact spinning technologies were modified. First, a three-strand funnel and three-groove delivery cylinder were designed to feed three-strand into the drafting zone and control strand space. Then, air-suction guides and suction inserts with different structures of air-inlet slots were designed to create a separate condensing zone for each of the strands. Different structures of the air-suction guide and suction insert were used for modeling the compacting zone and four different systems were introduced. The effectiveness of compacting zones was discussed according to the numerical flow-field simulation studied with SolidWorks Flow Simulation software. Numerical simulation results showed that creating separate condensing zones for three-strand yarns was achieved with all of the new designs. However, the air-guide with longer air-inlet slot channels provided better flow-velocity components and static pressure values. It was also seen that using the same guide with narrowed slots suction insert results in greater flow-velocity components. In the experimental part, the guide with longer air-inlet slots and narrowed slots of suction insert was produced with a 3D printer and used for compact three-strand production. Properties of the compact three-strand yarns were compared with ring three-strand yarns to investigate compacting effects, and it was seen that better yarn properties were obtained with the compact three-strand spinning.

2011 ◽  
Vol 101-102 ◽  
pp. 512-515
Author(s):  
Yi Sheng Liu ◽  
Xu Dong Hu ◽  
Peng Dong Su

A research program is currently underway with the purpose of developing a double-layer air jet looms with solo-supported gas device. Issues related to the design and feasibility analysis of the solo-supported high pressure gas device are discussed. The results of simulations show that assistant nozzle is necessary during weft insertion motion, but too many assistant nozzles would cause the flow velocity reduce. And it is confirmed that flow channel with one main and four assistant nozzles is one of the best designs to keep the flow velocity at the middle line of flow channel more than 90m/s and make the loom work swimmingly.


2018 ◽  
Vol 1064 ◽  
pp. 012003
Author(s):  
Guanghui Chen ◽  
Jie Bao ◽  
Shu Guo ◽  
Jianlong Li

Sign in / Sign up

Export Citation Format

Share Document