Preparation of single-layer coating polyester cotton composites with electric loss of their electromagnetic properties

2021 ◽  
pp. 004051752199981
Author(s):  
Yuanjun Liu ◽  
Yi Wang ◽  
Guang Yin

In this paper, single-layer coated polyester–cotton composites were prepared using PU-2540 waterborne polyurethane resin as the adhesive, graphite and silicon carbide as functional particles, and adopting a coating technology on the plain polyester–cotton fabric. First, the single-layer graphite-coated polyester cotton composite was prepared with graphite as the functional particle, and the influence of graphite content on the reflection loss and shielding effectiveness was studied. When the applied electric field frequency is 1610 MHz and the graphite content is 40 wt%, the minimum reflection loss is −26 dB; when the applied electric field frequency is 39.9 MHz and the graphite content is 50 wt%, the maximum shielding effectiveness is 12 dB. Then the single-layer silicon carbide-coated polyester–cotton composite was prepared with silicon carbide as the functional particle, and the influence of silicon carbide content on the reflection loss and shielding effectiveness was studied. With the applied electric field in the range 500∼3000 MHz, the greater the content of silicon carbide, the smaller the reflection loss, the better the wave-absorbing ability, the larger the shielding effectiveness, and the better the shielding performance. Finally, the single-layer graphite/silicon carbide-coated polyester–cotton composites were prepared by doping graphite and silicon carbide in different proportions, and the influence of doping ratio on dielectric properties, reflection loss, and shielding effectiveness was investigated. The real part of the dielectric constant of the material was highest – that is, the polarization ability of the material was best when there were only graphite particles in the doping medium and the silicon carbide content was 0. The imaginary part of the dielectric constant and the tangent of loss angle of the material were the highest – that is, the loss and attenuation ability of the material were best – when the doping ratio of graphite to silicon carbide is 4:1. With the applied electric field in the range 500∼3000 MHz, and with increasing graphite content, the reflection loss of the material became smaller, showing an enhanced wave-absorbing property, and the shielding effectiveness of the material increased, showing an enhanced shielding performance.

2021 ◽  
Author(s):  
Karthikeyan Rajagopal ◽  
Irene Moroz ◽  
Balamurali Ramakrishnan ◽  
Anitha Karthikeyan ◽  
Prakash Duraisamy

Abstract A Morris-Lecar neuron model is considered with Electric and Magnetic field effects where the electric field is a time varying sinusoid and magnetic field is simulated using an exponential flux memristor. We have shown that the exposure to electric and magnetic fields have significant effects on the neurons and have exhibited complex oscillations. The neurons exhibit a frequency-locked state for the periodic electric field and different ratios of frequency locked states with respect to the electric field frequency is also presented. To show the impact of the electric and magnetic fields on network of neurons, we have constructed different types of network and have shown the network wave propagation phenomenon. Interestingly the nodes exposed to both electric and magnetic fields exhibit more stable spiral waves compared to the nodes exhibited only to the magnetic fields. Also, when the number of layers are increased the range of electric field frequency for which the layers exhibit spiral waves also increase. Finally the noise effects on the field affected neuron network are discussed and multilayer networks supress spiral waves for a very low noise variance compared against the single layer network.


1984 ◽  
Vol 47 (3) ◽  
pp. 1023-1026
Author(s):  
Yu. K. Solomatnikov ◽  
A. G. Usmanov ◽  
D. M. Mikhailov

1994 ◽  
Vol 45 (3-4) ◽  
pp. 347-361 ◽  
Author(s):  
R.C. Peters ◽  
F. Bretschneider ◽  
W.J.G. Loos ◽  
P.S. Heijmen

Sign in / Sign up

Export Citation Format

Share Document