Schooling for multi-agent systems via impulsive containment control algorithms with quantized information

2018 ◽  
Vol 41 (3) ◽  
pp. 828-841 ◽  
Author(s):  
Hong-Xiao Zhang ◽  
Li Ding ◽  
Zhi-Wei Liu

In the paper, schooling problems based on containment control in multi-agent systems that have static or dynamic leaders under directed and undirected communication topologies are investigated. We propose a periodic impulsive containment control algorithm to realize schooling in multi-agent systems. Both ideal and quantized relative state measurements are considered under this framework. Some necessary and sufficient conditions, which depend on the eigenvalues of the Laplacian matrix that is associated with the communication graph, the impulsive period as well as the gain parameters, are obtained to realize the containment control of schooling. Finally, some numerical simulations are illustrated to verify the theoretical results.

2018 ◽  
Vol 40 (16) ◽  
pp. 4369-4381 ◽  
Author(s):  
Baojie Zheng ◽  
Xiaowu Mu

The formation-containment control problems of sampled-data second-order multi-agent systems with sampling delay are studied. In this paper, we assume that there exist interactions among leaders and that the leader’s neighbours are only leaders. Firstly, two different control protocols with sampling delay are presented for followers and leaders, respectively. Then, by utilizing the algebraic graph theory and matrix theory, several sufficient conditions are obtained to ensure that the leaders achieve a desired formation and that the states of the followers converge to the convex hull formed by the states of the leaders, i.e. the multi-agent systems achieve formation containment. Furthermore, an explicit expression of the formation position function is derived for each leader. An algorithm is provided to design the gain parameters in the protocols. Finally, a numerical example is given to illustrate the effectiveness of the obtained theoretical results.


2017 ◽  
Vol 40 (5) ◽  
pp. 1521-1528
Author(s):  
Yan Wang ◽  
Hong Zhou ◽  
Zhi-Wei Liu ◽  
Wenshan Hu ◽  
Wei Wang

In this paper, a new kind of intermittent control is proposed to study consensus problems of multi-agent systems with second-order dynamics. In particular, we consider the case that the information transmission occurs at sampling instants and the velocity information is not available for feedback. The proposed control only regulates the velocity of agents in a given sequence of disconnected time intervals, called activated intervals, after sampling instants. Remarkably, both the sampling and activated intervals are not required to be identical. By adopting algebraic graph theory and nonnegative matrix, some sufficient conditions are obtained for guaranteeing the consensus of the multi-agent systems under the switching topology. Finally, the numerical examples are included to illustrate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document