Can a knee brace reduce the strain in the anterior cruciate ligament? A study using combined in vivo/in vitro method

2015 ◽  
Vol 40 (3) ◽  
pp. 394-399 ◽  
Author(s):  
Gajendra Hangalur ◽  
Elora Brenneman ◽  
Micah Nicholls ◽  
Ryan Bakker ◽  
Andrew Laing ◽  
...  

Background and aim: It is unknown whether prophylactic knee braces can reduce the strain in the anterior cruciate ligament during dynamic activities. Technique: An athlete, who had characteristics of high anterior cruciate ligament injury risk, was chosen. A motion capture system (Optotrak Certus; Northern Digital, Waterloo, ON, Canada) was used to record dynamic trials during drop-landing activity of this subject with and without the knee brace being worn. A musculoskeletal model was used to estimate the muscle forces during this activity. A dynamic knee simulator then applied kinematics and muscle forces on a cadaver knee with and without the brace mounted on it. The anterior cruciate ligament strain was measured. Discussion: The peak strain in the anterior cruciate ligament was substantially lower for the braced (7%) versus unbraced (20%) conditions. Functional knee braces could decrease the strain in the anterior cruciate ligament during dynamic activities in a high-risk subject. However, the reduction seems to be a result of altered muscle firing pattern due to the brace. Clinical relevance Prophylactic knee brace could reduce the strain in the anterior cruciate ligament of high-risk subjects during drop-landing through altered muscle firing pattern associated with brace wear. This could help reduce the anterior cruciate ligament injury risk.

2018 ◽  
Vol 43 (2) ◽  
pp. 132-139 ◽  
Author(s):  
Mayank Kalra ◽  
Ryan Bakker ◽  
Sebastian S Tomescu ◽  
Anna M Polak ◽  
Micah Nicholls ◽  
...  

Background: A medial meniscal tear is a common knee injury, especially following an anterior cruciate ligament injury. Decreasing the compressive force on the medial meniscus during dynamic activities using an unloader knee brace could reduce meniscal strain, effectively reducing injury risk and/or severity. Objectives: To investigate the efficacy of two unloader knee braces on medial meniscus strain during dynamic activities in intact & deficient anterior cruciate ligament states. Study design: Combined in vivo/in vitro study. Methods: In vivo knee kinematics and muscle force profiles from a healthy individual performing single/doubleleg squats and walking motions were simulated on 10 cadaveric specimens using a dynamic knee simulator system. Simulations were performed on knees in unbraced and braced scenarios, with and without the anterior cruciate ligament. Anterior and posterior medial meniscal strains were measured. Results: Two different braces each showed a significant reduction in the posteromedial meniscal strain ( p ⩽ 0.01) in an intact anterior cruciate ligament state. Neither brace mirrored this result for the anteromedial strain ( p > 0.05). In the deficient anterior cruciate ligament state, the braces had no significant effect on strain ( p > 0.05). Conclusion: Two unloader knee braces effectively reduced strain in the medial meniscus with an intact anterior cruciate ligament during dynamic activities. Neither brace made a significant reduction in strain for anterior cruciate ligament-deficient knees. Clinical relevance Unloader knee braces could be used to reduce the medial meniscus strain following meniscal surgery and during rehabilitation in patients with an isolated medial meniscus injury. However, these braces cannot be recommended for this purpose in patients with an anterior cruciate ligament deficiency.


2021 ◽  
Vol 2 (1) ◽  
pp. 13-21
Author(s):  
Sophia L. Mancini ◽  
Clark Dickin ◽  
Dorice A. Hankemeier ◽  
Lindsey Rolston ◽  
Henry Wang

Soccer is becoming an increasingly popular sport amongst women. Common movements during play, such as jumping and cutting, require rapid acceleration and deceleration of multiple lower-limb joints. The anterior cruciate ligament (ACL), which contributes to stabilization of the knee, is often injured during these events. ACL injury typically requires costly surgery, extended time away from sports, and jeopardizes long-term joint health. Due to sex-specific factors such as menstruation and anatomical disadvantages, women are more susceptible to tearing their ACL. Injury often occurs in non-contact scenarios during rapid acceleration or deceleration movements. Research has examined these movements and established several kinematic and kinetic mechanisms as well as muscle activation patterns that frequently occur at the time of injury, however results tend to vary based on population. This article summarizes recent and relevant literature of ACL injury mechanisms and highlights the lack of specific research in the high-risk female soccer athlete population. Due to inconclusive risk factors, injury prevention programs within this population have been inconsistent. ACL injury risk for female soccer athletes should be closer examined so that more specific injury risks can be established, and effective protective measures can be taken. Raised awareness of this need may capture attention in the research and medical communities and potentially stimulate the development of strategies that limit future ACL injury and thus the challenges it brings to the high-risk female soccer athlete.


Author(s):  
Gian Nicola Bisciotti ◽  
Karim Chamari ◽  
Emanuele Cena ◽  
Andrea Bisciotti ◽  
Alessandro Bisciotti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document