firing pattern
Recently Published Documents


TOTAL DOCUMENTS

334
(FIVE YEARS 36)

H-INDEX

50
(FIVE YEARS 4)

2021 ◽  
pp. 1-22
Author(s):  
Eric C. Wong

The brain is thought to represent information in the form of activity in distributed groups of neurons known as attractors. We show here that in a randomly connected network of simulated spiking neurons, periodic stimulation of neurons with distributed phase offsets, along with standard spike-timing-dependent plasticity (STDP), efficiently creates distributed attractors. These attractors may have a consistent ordered firing pattern or become irregular, depending on the conditions. We also show that when two such attractors are stimulated in sequence, the same STDP mechanism can create a directed association between them, forming the basis of an associative network. We find that for an STDP time constant of 20 ms, the dependence of the efficiency of attractor creation on the driving frequency has a broad peak centered around 8 Hz. Upon restimulation, the attractors self-oscillate, but with an oscillation frequency that is higher than the driving frequency, ranging from 10 to 100 Hz.


2021 ◽  
Vol 15 ◽  
Author(s):  
Trinidad Montero ◽  
Rafael Ignacio Gatica ◽  
Navid Farassat ◽  
Rodrigo Meza ◽  
Cristian González-Cabrera ◽  
...  

The firing activity of ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) dopaminergic (DA) neurons is an important factor in shaping DA release and its role in motivated behavior. Dendrites in DA neurons are the main postsynaptic compartment and, along with cell body and axon initial segment, contribute to action potential generation and firing pattern. In this study, the organization of the dendritic domain in individual VTA and SNc DA neurons of adult male mice, and their relationship to in vivo spontaneous firing, are described. In comparison with dorsal VTA DA neurons, ventrally located VTA neurons (as measured by cell body location) possess a shorter total dendritic length and simpler dendritic architecture, and exhibit the most irregular in vivo firing patterns among DA neurons. In contrast, for DA neurons in the SNc, the higher irregularity of firing was related to a smaller dendritic domain, as measured by convex hull volumes. However, firing properties were also related to the specific regional distribution of the dendritic tree. Thus, VTA DA neurons with a larger extension of their dendritic tree within the parabrachial pigmented (PBP) nucleus fired more regularly compared with those with relatively more dendrites extending outside the PBP. For DA neurons in the SNc, enhanced firing irregularity was associated with a smaller proportion of dendrites penetrating the substantia nigra pars reticulata. These results suggest that differences in dendritic morphology contribute to the in vivo firing properties of individual DA neurons, and that the existence of region-specific synaptic connectivity rules that shape firing diversity.


NeuroSci ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 383-399
Author(s):  
Trevor N. Carniello ◽  
Robert M. Lafrenie ◽  
Blake T. Dotta

Previous research has demonstrated that pheochromocytoma (PC12) cells treated with forskolin provides a model for the in vitro examination of neuritogenesis. Exposure to electromagnetic fields (EMFs), especially those which have been designed to mimic biological function, can influence the functions of various biological systems. We aimed to assess whether exposure of PC12 cells treated with forskolin to patterned EMF would produce more plasma membrane extensions (PME) as compared to PC12 cells treated with forskolin alone (i.e., no EMF exposure). In addition, we aimed to determine whether the differences observed between the proportion of PME of PC12 cells treated with forskolin and exposed to EMF were specific to the intensity, pattern, or timing of the applied EMF. Our results showed an overall increase in PME for PC12 cells treated with forskolin and exposed to Burst-firing EMF as compared to PC12 cells receiving forskolin alone. No other patterned EMF investigated were deemed to be effective. Furthermore, intensity and timing of the Burst-firing pattern did not significantly alter the proportion of PME of PC12 cells treated with forskolin and exposed to patterned EMF.


2021 ◽  
Author(s):  
Maryna Pilkiw ◽  
Justin Jarovi ◽  
Kaori Takehara-Nishiuchi

Memory retrieval is thought to depend on the reinstatement of cortical memory representations guided by pattern completion processes in the hippocampus. The lateral entorhinal cortex (LEC) is one of the intermediary regions supporting hippocampal-cortical interactions and houses neurons that prospectively signal past events in a familiar environment. To investigate the functional relevance of the LEC's activity for cortical reinstatement, we pharmacologically inhibited the LEC and examined its impact on the stability of ensemble firing patterns in one of the LEC's efferent targets, the medial prefrontal cortex (mPFC). When male rats underwent multiple epochs of identical stimulus sequences in the same environment, the mPFC maintained a stable ensemble firing pattern across repetitions, particularly when the sequence included pairings of neutral and aversive stimuli. With LEC inhibition, the mPFC still formed an ensemble pattern that accurately captured stimuli and their associations within each epoch. However, LEC inhibition markedly disrupted its consistency across the epochs by decreasing the proportion of mPFC neurons that stably maintained firing selectivity for stimulus associations. Thus, the LEC stabilizes cortical representations of learned stimulus associations, thereby facilitating the recovery of the original memory trace without generating a new, redundant trace for familiar experiences. Failure of this process might underlie retrieval deficits in conditions associated with degeneration of the LEC, such as normal aging and Alzheimer's disease.


2021 ◽  
Author(s):  
Rui Cao ◽  
John H Bladon ◽  
Stephen J Charczynski ◽  
Michael Hasselmo ◽  
Marc Howard

The Weber-Fechner law proposes that our perceived sensory input increases with physical input on a logarithmic scale. Hippocampal "time cells" carry a record of recent experience by firing sequentially during a circumscribed period of time after a triggering stimulus. Different cells have "time fields" at different delays up to at least tens of seconds. Past studies suggest that time cells represent a compressed timeline by demonstrating that fewer time cells fire late in the delay and their time fields are wider. This paper asks whether the compression of time cells obeys the Weber-Fechner Law. Time cells were studied with a hierarchical Bayesian model that simultaneously accounts for the firing pattern at the trial level, cell level, and population level. This procedure allows separate estimates of the within-trial receptive field width and the across-trial variability. The analysis at the trial level suggests the time cells represent an internally coherent timeline as a group. Furthermore, even after isolating across-trial variability, time field width increases linearly with delay. Finally, we find that the time cell population is distributed evenly on a logarithmic time scale. Together, these findings provide strong quantitative evidence that the internal neural temporal representation is logarithmically compressed and obeys a neural instantiation of the Weber- Fechner Law.


2021 ◽  
Vol 22 (12) ◽  
pp. 6575
Author(s):  
I. Emeline Wong Fong Sang ◽  
Jonas Schroer ◽  
Lisa Halbhuber ◽  
Davide Warm ◽  
Jenq-Wei Yang ◽  
...  

A substantial proportion of neurons undergoes programmed cell death (apoptosis) during early development. This process is attenuated by increased levels of neuronal activity and enhanced by suppression of activity. To uncover whether the mere level of activity or also the temporal structure of electrical activity affects neuronal death rates, we optogenetically controlled spontaneous activity of synaptically-isolated neurons in developing cortical cultures. Our results demonstrate that action potential firing of primary cortical neurons promotes neuronal survival throughout development. Chronic patterned optogenetic stimulation allowed to effectively modulate the firing pattern of single neurons in the absence of synaptic inputs while maintaining stable overall activity levels. Replacing the burst firing pattern with a non-physiological, single pulse pattern significantly increased cell death rates as compared to physiological burst stimulation. Furthermore, physiological burst stimulation led to an elevated peak in intracellular calcium and an increase in the expression level of classical activity-dependent targets but also decreased Bax/BCL-2 expression ratio and reduced caspase 3/7 activity. In summary, these results demonstrate at the single-cell level that the temporal pattern of action potentials is critical for neuronal survival versus cell death fate during cortical development, besides the pro-survival effect of action potential firing per se.


2021 ◽  
Author(s):  
Lena H Nguyen ◽  
Youfen Xu ◽  
Travorn Mahadeo ◽  
Longbo Zhang ◽  
Tiffany V Lin ◽  
...  

Hyperactivation of mTOR signaling during fetal neurodevelopment alters neuron structure and function, leading to focal malformation of cortical development (FMCD) and intractable epilepsy. Recent evidence suggests increased cap-dependent translation downstream of mTOR contributes to FMCD formation and seizures. However, whether reducing overactive translation once the developmental pathologies are established reverses neuronal abnormalities and seizures is unknown. Here, we found that the translational repressor 4E-BP1, which is inactivated by mTOR-mediated phosphorylation, is hyperphosphorylated in patient FMCD tissue and in a mouse model of FMCD. Expressing constitutive active 4E-BP1 to repress aberrant translation in juvenile mice with FMCD reduced neuronal cytomegaly and corrected several electrophysiological alterations, including depolarized resting membrane potential, irregular firing pattern, and aberrant HCN4 channel expression. This was accompanied by improved cortical spectral activity and decreased seizures. Although mTOR controls multiple pathways, our study shows that targeting 4E-BP1-mediated translation alone is sufficient to alleviate neuronal dysfunction and ongoing epilepsy.


2021 ◽  
Author(s):  
Laetitia Etchepare ◽  
Hélène Gréa ◽  
Pauline Durand ◽  
Delphine Bouchet ◽  
Laurent Groc

2021 ◽  
Vol 15 ◽  
Author(s):  
Kai Yang ◽  
Xinyue Zhao ◽  
Changcai Wang ◽  
Cheng Zeng ◽  
Yan Luo ◽  
...  

L-DOPA is the criterion standard of treatment for Parkinson disease. Although it alleviates some of the Parkinsonian symptoms, long-term treatment induces L-DOPA–induced dyskinesia (LID). Several theoretical models including the firing rate model, the firing pattern model, and the ensemble model are proposed to explain the mechanisms of LID. The “firing rate model” proposes that decreasing the mean firing rates of the output nuclei of basal ganglia (BG) including the globus pallidus internal segment and substantia nigra reticulata, along the BG pathways, induces dyskinesia. The “firing pattern model” claimed that abnormal firing pattern of a single unit activity and local field potentials may disturb the information processing in the BG, resulting in dyskinesia. The “ensemble model” described that dyskinesia symptoms might represent a distributed impairment involving many brain regions, but the number of activated neurons in the striatum correlated most strongly with dyskinesia severity. Extensive evidence for circuit mechanisms in driving LID symptoms has also been presented. LID is a multisystem disease that affects wide areas of the brain. Brain regions including the striatum, the pallidal–subthalamic network, the motor cortex, the thalamus, and the cerebellum are all involved in the pathophysiology of LID. In addition, although both amantadine and deep brain stimulation help reduce LID, these approaches have complications that limit their wide use, and a novel antidyskinetic drug is strongly needed; these require us to understand the circuit mechanism of LID more deeply.


2021 ◽  
Vol 13 (2) ◽  
pp. 168781402098465
Author(s):  
Toru Hamasaki ◽  
Daisuke Yamada

Numerical simulation can be used to observe spatiotemporal firing responses of tactile receptors during dynamic tactile exploration, and it provides a more understanding of the mechanism of tactile perception. In this study, we developed an improved mechano-neurophysiological model of the fingertip that employs a realistic fingertip structure and accurate contact mechanics while scanning embossed letters. To confirm the potential of the model, we simulated the spatiotemporal firing patterns of slowly adapting type-1 (SA1) mechanoreceptors while scanning the embossed letter “G” and compared the simulation result with the existing experimental data in neurophysiology. Although the experimental data were reconstructed from a single nerve fiber, the simulation simultaneously observed the responses of multiple SA1 receptors, which resulted in a more obscure “G” spatiotemporal firing pattern than that in the previous experiment. This result supports existing data from another psychophysical experiment that demonstrates that it is harder to recognize embossed letter “G” accurately during letter scanning. This finding suggests that the spatiotemporal firing pattern from multiple SA1 receptors may show an obscure “G” pattern while scanning the embossed letter “G”.


Sign in / Sign up

Export Citation Format

Share Document