scholarly journals Modulation of human trigeminal and extracranial nociceptive processing by transcranial direct current stimulation of the motor cortex

Cephalalgia ◽  
2011 ◽  
Vol 31 (6) ◽  
pp. 661-670 ◽  
Author(s):  
Niels Hansen ◽  
Mark Obermann ◽  
Franziska Poitz ◽  
Dagny Holle ◽  
Hans-Christoph Diener ◽  
...  

Objective: The study was conducted to investigate the after-effect of transcranial direct current stimulation (tDCS) applied over the human primary motor cortex (M1) on trigeminal and extracranial nociceptive processing. Basic procedures: Nineteen healthy volunteers were stimulated using cathodal, anodal (both 1 mA) or sham tDCS for 20 minutes. Pain processing was assessed by recording trigeminal and extracranial pain-related evoked potentials (PREPs) following electrical stimulation of the contralateral forehead and hand at baseline, 0, 20 and 50 minutes post-tDCS. Main findings: Cathodal tDCS resulted in decreased peak-to-peak amplitudes (PPAs) by 18% while anodal tDCS lead to increased PPAs of PREPs by 35% ( p < .05). Principal conclusions: The decreased PPAs suggest an inhibition and the increased PPAs of PREPs suggest an excitation of trigeminal and extracranial pain processing induced by tDCS of the M1. These results may provide evidence for the effectiveness of tDCS as a therapeutic instrument in treating headache disorders.

2011 ◽  
Vol 105 (6) ◽  
pp. 2937-2942 ◽  
Author(s):  
Alana B. McCambridge ◽  
Lynley V. Bradnam ◽  
Cathy M. Stinear ◽  
Winston D. Byblow

Proximal upper limb muscles are represented bilaterally in primary motor cortex. Goal-directed upper limb movement requires precise control of proximal and distal agonist and antagonist muscles. Failure to suppress antagonist muscles can lead to abnormal movement patterns, such as those commonly experienced in the proximal upper limb after stroke. We examined whether noninvasive brain stimulation of primary motor cortex could be used to improve selective control of the ipsilateral proximal upper limb. Thirteen healthy participants performed isometric left elbow flexion by contracting biceps brachii (BB; agonist) and left forearm pronation (BB antagonist) before and after 20 min of cathodal transcranial direct current stimulation (c-tDCS) or sham tDCS of left M1. During the tasks, motor evoked potentials (MEPs) in left BB were acquired using single-pulse transcranial magnetic stimulation of right M1 150–270 ms before muscle contraction. As expected, left BB MEPs were facilitated before flexion and suppressed before pronation. After c-tDCS, left BB MEP amplitudes were reduced compared with sham stimulation, before pronation but not flexion, indicating that c-tDCS enhanced selective muscle activation of the ipsilateral BB in a task-specific manner. The potential for c-tDCS to improve BB antagonist control correlated with BB MEP amplitude for pronation relative to flexion, expressed as a selectivity ratio. This is the first demonstration that selective muscle activation in the proximal upper limb can be improved after c-tDCS of ipsilateral M1 and that the benefits of c-tDCS for selective muscle activation may be most effective in cases where activation strategies are already suboptimal. These findings may have relevance for the use of tDCS in rehabilitation after stroke.


Sign in / Sign up

Export Citation Format

Share Document