scholarly journals High versus low ultrafiltration rates during experimental peritoneal dialysis in rats: Acute effects on plasma volume and systemic haemodynamics

2022 ◽  
pp. 089686082110692
Author(s):  
Jakob Helman ◽  
Carl M Öberg

Introduction: Intradialytic hypotension is a common complication of haemodialysis, but uncommon in peritoneal dialysis (PD). This may be due to lower ultrafiltration rates in PD compared to haemodialysis, allowing for sufficient refilling of the blood plasma compartment from the interstitial volume, but the underlying mechanisms are unknown. Here we assessed plasma volume and hemodynamic alterations during experimental PD with high versus low ultrafiltration rates. Methods: Experiments were conducted in two groups of healthy Sprague-Dawley rats: one group with a high ultrafiltration rate ( N = 7) induced by 8.5% glucose and a low UF group ( N = 6; 1.5% glucose), with an initial assessment of the extracellular fluid volume, followed by 30 min PD with plasma volume measurements at baseline, 5, 10, 15 and 30 min. Mean arterial pressure, central venous pressure and heart rate were continuously monitored during the experiment. Results: No significant changes over time in plasma volume, mean arterial pressure or central venous pressure were detected during the course of the experiments, despite an ultrafiltration (UF) rate of 56 mL/h/kg in the high UF group. In the high UF group, a decrease in extracellular fluid volume of −7 mL (−10.7% (95% confidence interval: −13.8% to −7.6%)) was observed, in line with the average UF volume of 8.0 mL (standard deviation: 0.5 mL). Conclusion: Despite high UF rates, we found that plasma volumes were remarkably preserved in the present experiments, indicating effective refilling of the plasma compartment from interstitial tissues. Further studies should clarify which mechanisms preserve the plasma volume during high UF rates in PD.

2019 ◽  
Author(s):  
Wei Tan ◽  
Dong-chen Qian ◽  
Meng-meng Zheng ◽  
Xuan Lu ◽  
Yuan Han ◽  
...  

Abstract Background: The infusion of magnesium sulfate is well known to reduce arterial pressure and attenuate hemodynamic response to pneumoperitoneum. This study aimed to investigate whether different doses of magnesium sulfate can effectively attenuate the pneumoperitoneum-related hemodynamic changes and the release of vasopressin in patients undergoing laparoscopic gastrointestinal surgery. Methods: Sixty-nine patients undergoing laparoscopic partial gastrectomy were randomized into three groups: group L received magnesium sulfate 30 mg/kg loading dose and 15 mg/kg/h continuous maintenance infusion for 1 h; group H received magnesium sulfate 50 mg/kg followed by 30 mg/kg/h for 1 h; and group S (control group) received same volume 0.9% saline infusion, immediately before the induction of pneumoperitoneum. Systemic vascular resistance (SVR), cardiac output (CO), mean arterial pressure (MAP), heart rate (HR), central venous pressure(CVP), serum vasopressin and magnesium concentrations were measured. The extubation time, visual analogue scale were also assessed. The primary outcome is the difference in SVR between different groups. The secondary outcome is the differences of other indicators between groups, such as CO, MAP, HR, CVP, vasopressin and postoperative pain score. Results: Pneumoperitoneum instantly resulted in a significant reduction of cardiac output and an increase in mean arterial pressure, systemic vascular resistance, central venous pressure and heart rate in the control group (P < 0.01). The mean arterial pressure (T2 – T4), systemic vascular resistance (T2 – T3), central venous pressure(T3-T5) and the level of serum vasopressin were significantly lower (P < 0.05) and the cardiac output (T2 – T3) was significantly higher (P < 0.05) in group H than those in the control group. The mean arterial pressure (T4), systemic vascular resistance (T2), and central venous pressure(T3-T4) were significantly lower in group H than those in group L (P < 0.05). Furthermore, the visual analog scales at 5 min and 20 min, the level of vasopressin, and the dose of remifentanil were significantly decreased in group H compared to the control group and group L (P < 0.01). Conclusion: Magnesium sulfate could safely and effectively attenuate the pneumoperitoneum-related hemodynamic instability during gastrointestinal laparoscopy and improve postoperative pain at serum magnesium concentrations above 2 mmol/L.


2019 ◽  
Author(s):  
Wei Tan ◽  
Dong-chen Qian ◽  
Meng-meng Zheng ◽  
Xuan Lu ◽  
Yuan Han ◽  
...  

Abstract Background: The infusion of magnesium sulfate is well known to reduce arterial pressure and attenuate hemodynamic response to pneumoperitoneum. This study aimed to investigate whether different doses of magnesium sulfate can effectively attenuate the pneumoperitoneum-related hemodynamic changes and the release of vasopressin in patients undergoing laparoscopic gastrointestinal surgery. Methods: Sixty-nine patients undergoing laparoscopic partial gastrectomy were randomized into three groups: group L received magnesium sulfate 30 mg/kg loading dose and 15 mg/kg/h continuous maintenance infusion for 1 h; group H received magnesium sulfate 50 mg/kg followed by 30 mg/kg/h for 1 h; and group S (control group) received same volume 0.9% saline infusion, immediately before the induction of pneumoperitoneum. Systemic vascular resistance (SVR), cardiac output (CO), mean arterial pressure (MAP), heart rate (HR), central venous pressure(CVP), serum vasopressin and magnesium concentrations were measured. The extubation time, visual analogue scale were also assessed. The primary outcome is the difference in SVR between different groups. The secondary outcome is the differences of other indicators between groups, such as CO, MAP, HR, CVP, vasopressin and postoperative pain score. Results: Pneumoperitoneum instantly resulted in a significant reduction of cardiac output and an increase in mean arterial pressure, systemic vascular resistance, central venous pressure and heart rate in the control group (P < 0.01). The mean arterial pressure (T2 – T4), systemic vascular resistance (T2 – T3), central venous pressure(T3-T5) and the level of serum vasopressin were significantly lower (P < 0.05) and the cardiac output (T2 – T3) was significantly higher (P < 0.05) in group H than those in the control group. The mean arterial pressure (T4), systemic vascular resistance (T2), and central venous pressure(T3-T4) were significantly lower in group H than those in group L (P < 0.05). Furthermore, the visual analog scales at 5 min and 20 min, the level of vasopressin, and the dose of remifentanil were significantly decreased in group H compared to the control group and group L (P < 0.01). Conclusion: Magnesium sulfate could safely and effectively attenuate the pneumoperitoneum-related hemodynamic instability during gastrointestinal laparoscopy and improve postoperative pain at serum magnesium concentrations above 2 mmol/L.


1988 ◽  
Vol 65 (3) ◽  
pp. 1226-1230 ◽  
Author(s):  
S. R. Goldsmith

Increases in central venous pressure and arterial pressure have been reported to have variable effects on normal arginine vasopressin (AVP) levels in healthy humans. To test the hypothesis that baroreceptor suppression of AVP secretion might be more likely if AVP were subjected to a prior osmotic stimulus, we investigated the response of plasma AVP to increased central venous pressure and mean arterial pressure after hypertonic saline in six normal volunteers. Plasma AVP, serum osmolality, heart rate, central venous pressure, mean arterial pressure, and pulse pressure were assessed before and after a 0.06 ml.kg-1.min-1-infusion of 5% saline give over 90 min and then after 10 min of 30 degrees head-down tilt and 10 min of head-down tilt plus lower-body positive pressure. Hypertonic saline increased plasma AVP. After head-down tilt, which did not change heart rate, pulse pressure, or mean arterial pressure but did increase central venous pressure, plasma AVP fell. Heart rate, pulse pressure, and central venous pressure were unchanged from head-down tilt values during lower-body positive pressure, whereas mean arterial pressure increased. Plasma AVP during lower-body positive pressure was not different from that during tilt. Osmolality increased during the saline infusion but was stable throughout the remainder of the study. These data therefore suggest that an osmotically stimulated plasma AVP level can be suppressed by baroreflex activation. Either the low-pressure cardiopulmonary receptors (subjected to a rise in central venous pressure during head-down tilt) or the sinoaortic baroreceptors (subjected to hydrostatic effects during head-down tilt) could have been responsible for the suppression of AVP.(ABSTRACT TRUNCATED AT 250 WORDS)


1995 ◽  
Vol 83 (1) ◽  
pp. 88-95. ◽  
Author(s):  
Thomas J. Ebert ◽  
Michael Muzi ◽  
Craig W. Lopatka

Background Sevoflurane and desflurane are new volatile anesthetics with low blood solubilities that confer properties of rapid anesthetic induction and emergence. Desflurane has been associated with neurocirculatory excitation after the rapid increase in inspired concentrations. The current study evaluated and compared the sympathetic and hemodynamic responses associated with the administration of sevoflurane to those associated with administration of desflurane in humans. Methods After Institutional Review Board approval, 21 healthy, young (19-32 yr) volunteers were randomly selected for participation. Arterial and central venous pressures were measured directly, and heart rate, forearm blood flow, and plasma norepinephrine concentrations were determined indirectly. Efferent muscle sympathetic nerve activity was recorded by microneurography. After neurocirculatory recordings at conscious baseline, measurements were repeated beginning 2 min after 2 mg/kg propofol while the anesthetic was increased incrementally by mask over a 10-min period at 1%, 2%, and 3% sevoflurane (n = 12) or 3%, 6%, and 9% desflurane (n = 9). Responses to intubation were recorded and, 20 min later, recordings were evaluated during steady-state periods of 0.41, 0.83, and 1.24 MAC. Data also were obtained after steady-state 0.83 MAC measurements when the inspired gas concentration was rapidly increased to either 3% sevoflurane or 9% desflurane ("transition" to 1.24 MAC). Results Neurocirculatory variables did not differ between the two groups at conscious baseline. During the period of administration via mask and during the "transition" period, the significant increases in sympathetic nerve activity, heart rate, mean arterial pressure, and central venous pressure associated with desflurane were not observed with sevoflurane. Ten minutes after induction, mean arterial pressure and heart rate responses to intubation did not differ between groups. With increasing anesthetic concentration, there were progressive and similar decreases in mean arterial pressure in both groups and no changes in heart rate. Central venous pressure, sympathetic nerve activity, and plasma norepinephrine increased with the greater minimum alveolar concentration multiple of desflurane but not with that of sevoflurane. Conclusions The neurocirculatory excitation seen with rapid increases in desflurane did not occur with sevoflurane. At steady-state, increasing the concentration of sevoflurane was associated with lower sympathetic nerve activity and central venous pressure and similar mean arterial pressure and heart rate with that of desflurane.


1981 ◽  
Vol 61 (6) ◽  
pp. 685-691 ◽  
Author(s):  
M. Bianchi ◽  
G. Bellini ◽  
H. Hessan ◽  
K. E. Kim ◽  
C. Swartz ◽  
...  

1. Plasma volume, packed cell volume (PCV), blood volume, extracellular fluid volume (ECFV) and Evans blue disappearance rate were measured in conscious spontaneously hypertensive rats and in weight-matched Wistar normotensive rats. 2. Over the weight range studied (250-350 g), plasma and blood volumes were significantly lower in the spontaneously hypertensive rat. Extracellular fluid volumes were similar in the two groups. PCV arid Evans blue disappearance rates were significantly higher in the spontaneously hypertensive rat. 3. Negative correlations were obtained between plasma volume and mean arterial pressure and between the plasma/interstitial fluid volume ratio and mean arterial pressure. 4. the normal extracellular fluid volume and the lack of correlation with mean arterial pressure excludes volume expansion as a pressor mechanism during the established phase of hypertension in the spontaneously hypertensive rat.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Wei Tan ◽  
Dong-chen Qian ◽  
Meng-meng Zheng ◽  
Xuan Lu ◽  
Yuan Han ◽  
...  

Abstract Background The infusion of magnesium sulfate is well known to reduce arterial pressure and attenuate hemodynamic response to pneumoperitoneum. This study aimed to investigate whether different doses of magnesium sulfate can effectively attenuate the pneumoperitoneum-related hemodynamic changes and the release of vasopressin in patients undergoing laparoscopic gastrointestinal surgery. Methods Sixty-nine patients undergoing laparoscopic partial gastrectomy were randomized into three groups: group L received magnesium sulfate 30 mg/kg loading dose and 15 mg/kg/h continuous maintenance infusion for 1 h; group H received magnesium sulfate 50 mg/kg followed by 30 mg/kg/h for 1 h; and group S (control group) received same volume 0.9% saline infusion, immediately before the induction of pneumoperitoneum. Systemic vascular resistance (SVR), cardiac output (CO), mean arterial pressure (MAP), heart rate (HR), central venous pressure (CVP), serum vasopressin and magnesium concentrations were measured. The extubation time, visual analogue scale were also assessed. The primary outcome is the difference in SVR between different groups. The secondary outcome is the differences of other indicators between groups, such as CO, MAP, HR, CVP, vasopressin and postoperative pain score. Results Pneumoperitoneum instantly resulted in a significant reduction of cardiac output and an increase in mean arterial pressure, systemic vascular resistance, central venous pressure and heart rate in the control group (P <  0.01). The mean arterial pressure (T2 – T4), systemic vascular resistance (T2 – T3), central venous pressure(T3-T5) and the level of serum vasopressin were significantly lower (P <  0.05) and the cardiac output (T2 – T3) was significantly higher (P <  0.05) in group H than those in the control group. The mean arterial pressure (T4), systemic vascular resistance (T2), and central venous pressure(T3-T4) were significantly lower in group H than those in group L (P <  0.05). Furthermore, the visual analog scales at 5 min and 20 min, the level of vasopressin, and the dose of remifentanil were significantly decreased in group H compared to the control group and group L (P <  0.01). Conclusion Magnesium sulfate could safely and effectively attenuate the pneumoperitoneum-related hemodynamic instability during gastrointestinal laparoscopy and improve postoperative pain at serum magnesium concentrations above 2 mmol/L. Trial registration The study was retrospectively registered at Chinese Clinical Trial Registry; the registration number is ChiCTR-IPD-17011145, principal investigator: D.Y. Q., date of registration: April 13, 2017.


2019 ◽  
Author(s):  
Wei Tan ◽  
Dong-chen Qian ◽  
Meng-meng Zheng ◽  
Xuan Lu ◽  
Yuan Han ◽  
...  

Abstract Background: The infusion of magnesium sulfate is well known to reduce arterial pressure and attenuate hemodynamic response to pneumoperitoneum. This study aimed to investigate whether different doses of magnesium sulfate can effectively attenuate the pneumoperitoneum-related hemodynamic changes and the release of vasopressin in patients undergoing laparoscopic gastrointestinal surgery. Methods: Sixty-nine patients undergoing laparoscopic partial gastrectomy were randomized into three groups: group L received magnesium sulfate 30 mg/kg loading dose and 15 mg/kg/h continuous maintenance infusion for 1 h; group H received magnesium sulfate 50 mg/kg followed by 30 mg/kg/h for 1 h; and group S (control group) received same volume 0.9% saline infusion, immediately before the induction of pneumoperitoneum. Systemic vascular resistance (SVR), cardiac output (CO), mean arterial pressure (MAP), heart rate (HR), central venous pressure(CVP), serum vasopressin and magnesium concentrations were measured. The extubation time, visual analogue scale were also assessed. The primary outcome is the difference in SVR between different groups. The secondary outcome is the differences of other indicators between groups, such as CO, MAP, HR, CVP, vasopressin and postoperative pain score. Results: Pneumoperitoneum instantly resulted in a significant reduction of cardiac output and an increase in mean arterial pressure, systemic vascular resistance, central venous pressure and heart rate in the control group (P < 0.01). The mean arterial pressure (T2 – T4), systemic vascular resistance (T2 – T3), central venous pressure(T3-T5) and the level of serum vasopressin were significantly lower (P < 0.05) and the cardiac output (T2 – T3) was significantly higher (P < 0.05) in group H than those in the control group. The mean arterial pressure (T4) , systemic vascular resistance (T2) and central venous pressure(T3-T4) were significantly lower in group H than those in group L (P < 0.05). Furthermore, the visual analogue scales at 5 min and 20 min, the level of vasopressin, and the dosage of remifentanil were significantly decreased in group H compared to the control group and group L (P < 0.01). Conclusion: Magnesium sulfate could safely and effectively attenuate the pneumoperitoneum-related hemodynamic instability during gastrointestinal laparoscopy and improve postoperative pain at serum magnesium concentrations above 2 mmol/L.


Sign in / Sign up

Export Citation Format

Share Document