nature inspired algorithm
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 91)

H-INDEX

11
(FIVE YEARS 4)

Author(s):  
Randa Jalaa Yahya ◽  
Nizar Hadi Abbas

A newly hybrid nature-inspired algorithm called HSSGWOA is presented with the combination of the salp swarm algorithm (SSA) and grey wolf optimizer (GWO). The major idea is to combine the salp swarm algorithm's exploitation ability with the grey wolf optimizer's exploration ability to generate both variants' strength. The proposed algorithm uses to tune the parameters of the integral sliding mode controller (ISMC) that design to improve the dynamic performance of the two-link flexible joint manipulator. The efficiency and the capability of the proposed hybrid algorithm are evaluated based on the selected test functions. It is clear that when compared to other algorithms like SSA, GWO, differential evolution (DE), gravitational search algorithm (GSA), particles swarm optimization (PSO), and whale optimization algorithm (WOA). The ISMC parameters were tuned using the SSA, which was then compared to the HSSGWOA algorithm. The simulation results show the capabilities of the proposed algorithm, which gives an enhancement percentage of 57.46% compared to the standard algorithm for one of the links, and 55.86% for the other.


2022 ◽  
Vol 72 (1) ◽  
pp. 83-90
Author(s):  
Himanshu Singh ◽  
Millie Pant ◽  
Sudhir Khare

Motion estimation, object detection, and tracking have been actively pursued by researchers in the field of real time video processing. In the present work, a new algorithm is proposed to automatically detect objects using revised local binary pattern (m-LBP) for object detection. The detected object was tracked and its location estimated using the Kalman filter, whose state covariance matrix was tuned using particle swarm optimisation (PSO). PSO, being a nature inspired algorithm, is a well proven optimization technique. This algorithm was applied to important real-world problems of partially-occluded objects in infrared videos. Algorithm validation was performed by realizing a thermal imager, and this novel algorithm was implemented in it to demonstrate that the proposed algorithm is more efficient and produces better results in motion estimation for partially-occluded objects. It is also shown that track convergence is 56% faster in the PSO-Kalman algorithm than tracking with Kalman-only filter.


Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 37
Author(s):  
Suma L. Sivan ◽  
Vinod Chandra S. Sukumara Pillai

Network biology has become a key tool in unravelling the mechanisms of complex diseases. Detecting dys-regulated subnetworks from molecular networks is a task that needs efficient computational methods. In this work, we constructed an integrated network using gene interaction data as well as protein–protein interaction data of differentially expressed genes derived from the microarray gene expression data. We considered the level of differential expression as well as the topological weight of proteins in interaction network to quantify dys-regulation. Then, a nature-inspired Smell Detection Agent (SDA) optimisation algorithm is designed with multiple agents traversing through various paths in the network. Finally, the algorithm provides a maximum weighted module as the optimum dys-regulated subnetwork. The analysis is performed for samples of triple-negative breast cancer as well as colorectal cancer. Biological significance analysis of module genes is also done to validate the results. The breast cancer subnetwork is found to contain i) valid biomarkers including PIK3CA, PTEN, BRCA1, AR and EGFR; ii) validated drug targets TOP2A, CDK4, HDAC1, IL6, BRCA1, HSP90AA1 and AR; iii) synergistic drug targets EGFR and BIRC5. Moreover, based on the weight values assigned to nodes in the subnetwork, PLK1, CTNNB1, IGF1, AURKA, PCNA, HSPA4 and GAPDH are proposed as drug targets for further studies. For colorectal cancer module, the analysis revealed the occurrence of approved drug targets TYMS, TOP1, BRAF and EGFR. Considering the higher weight values, HSP90AA1, CCNB1, AKT1 and CXCL8 are proposed as drug targets for experimentation. The derived subnetworks possess cancer-related pathways as well. The SDA-derived breast cancer subnetwork is compared with that of tools such as MCODE and Minimum Spanning Tree, and observed a higher enrichment (75%) of significant elements. Thus, the proposed nature-inspired algorithm is a novel approach to derive the optimum dys-regulated subnetwork from huge molecular network.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2388
Author(s):  
Mohammad H. Nadimi-Shahraki ◽  
Shokooh Taghian ◽  
Seyedali Mirjalili ◽  
Ahmed A. Ewees ◽  
Laith Abualigah ◽  
...  

The moth-flame optimization (MFO) algorithm is an effective nature-inspired algorithm based on the chemical effect of light on moths as an animal with bilateral symmetry. Although it is widely used to solve different optimization problems, its movement strategy affects the convergence and the balance between exploration and exploitation when dealing with complex problems. Since movement strategies significantly affect the performance of algorithms, the use of multi-search strategies can enhance their ability and effectiveness to solve different optimization problems. In this paper, we propose a multi-trial vector-based moth-flame optimization (MTV-MFO) algorithm. In the proposed algorithm, the MFO movement strategy is substituted by the multi-trial vector (MTV) approach to use a combination of different movement strategies, each of which is adjusted to accomplish a particular behavior. The proposed MTV-MFO algorithm uses three different search strategies to enhance the global search ability, maintain the balance between exploration and exploitation, and prevent the original MFO’s premature convergence during the optimization process. Furthermore, the MTV-MFO algorithm uses the knowledge of inferior moths preserved in two archives to prevent premature convergence and avoid local optima. The performance of the MTV-MFO algorithm was evaluated using 29 benchmark problems taken from the CEC 2018 competition on real parameter optimization. The gained results were compared with eight metaheuristic algorithms. The comparison of results shows that the MTV-MFO algorithm is able to provide competitive and superior results to the compared algorithms in terms of accuracy and convergence rate. Moreover, a statistical analysis of the MTV-MFO algorithm and other compared algorithms was conducted, and the effectiveness of our proposed algorithm was also demonstrated experimentally.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Sapna Katiyar ◽  
Rijwan Khan ◽  
Santosh Kumar

This paper enlightens the use of artificial intelligence (AI) for distribution of fresh foods by searching more viable route to keep intact the food attributes. In recent years, very hard-hitting competition is for food industries because of the individuals living standards and their responsiveness for fresh food products demand within stipulated time period. Food industry deals with the extensive kind of activities such as food processing, food packaging and distribution, and instrumentation and control. To meet market demand, customer satisfaction, and maintaining its own brand and ranking on global scale, artificial intelligence can play a vibrant role in decision-making by providing analytical solutions with adjusting available resources. Therefore, by integrating innovative technologies for fresh food distribution, potential benefits have been increased, and simultaneously risk associated with the food quality is reduced. Time is a major factor upon which food quality depends; hence, time required to complete the task must be minimized, and it is achieved by reducing the distance travelled; so, path optimization is the key for the overall task. Swarm intelligence (SI) is a subfield of artificial intelligence and consists of many algorithms. SI is a branch of nature-inspired algorithm, having a capability of global search, and gives optimized solution for real-time problems adaptive in nature. An artificial bee colony (ABC) optimization and cuckoo search (CS) algorithm also come into the category of SI algorithm. Researchers have implemented ABC algorithm and CS algorithm to optimize the distribution route for fresh food delivery in time window along with considering other factors: fixed number of delivery vehicles and fixed cost and fuel by covering all service locations. Results show that this research provides an efficient approach, i.e., artificial bee colony algorithm for fresh food distribution in time window without penalty and food quality loss.


2021 ◽  
Vol 21 (1) ◽  
pp. 48
Author(s):  
Widi Aribowo ◽  
Supari Muslim ◽  
Fendi Achmad ◽  
Aditya Chandra Hermawan

This article presents a direct current (DC) motor control approach using a hybrid Seagull Optimization Algorithm (SOA) and Neural Network (NN) method. SOA method is a nature-inspired algorithm. DC motor speed control is very important to maintain the stability of motor operation. The SOA method is an algorithm that duplicates the life of the seagull in nature. Neural network algorithms will be improved using the SOA method. The neural network used in this study is a feed-forward neural network (FFNN). This research will focus on controlling DC motor speed. The efficacy of the proposed method is compared with the Proportional Integral Derivative (PID) method, the Feed Forward Neural Network (FFNN), and the Cascade Forward Backpropagation Neural Network (CFBNN). From the results of the study, the proposed control method has good capabilities compared to standard neural methods, namely FFNN and CFBNN. Integral Time Absolute Error and Square Error (ITAE and ITSE) values from the proposed method are on average of 0.96% and 0.2% better than the FFNN and CFBNN methods.


Sign in / Sign up

Export Citation Format

Share Document