RCA-PCK: A new structural reliability analysis method based on PC-Kriging and radial centralized adaptive sampling strategy

Author(s):  
Zhenliang Yu ◽  
Zhili Sun ◽  
Runan Cao ◽  
Jian Wang ◽  
Yutao Yan

To improve the efficiency and accuracy of reliability assessment for structures with small failure probability and time-consuming simulation, a new structural reliability analysis method (RCA-PCK) is proposed, which combines PC-Kriging model and radial centralized adaptive sampling strategy. Firstly, the PC-Kriging model is constructed by improving the basis function of Kriging model with sparse polynomials. Then, the sampling region which contributes a great impact on the failure probability is constructed by combining the radial concentration and important sampling technology. Subsequently, the k-means++ clustering technology and learning function LIF are adopted to select new training samples from each subdomains in each iteration. To avoid the sampling distance in one subdomain or the distance between the new training samples in two subdomains being too small, we construct a screening mechanism to ensure that the selected new training samples are evenly distributed in the limit state. In addition, a new convergence criterion is derived based on the relative error estimation of failure probability. Four benchmark examples are given to illustrate the convergence process, accuracy and stability of the proposed method. Finally, the transmission error reliability analysis of thermal-elastic coupled gears is carried out to prove the applicability of the proposed method RCA-PCK to the structures with strong nonlinearity and time-consuming simulation.

2013 ◽  
Vol 838-841 ◽  
pp. 360-363 ◽  
Author(s):  
Li Rong Sha ◽  
Yue Yang

In order to predict the failure probability of a complicated structure, the structural responses usually need to be predicted by a numerical procedure, such as FEM method. The response surface method could be used to reduce the computational effort required for reliability analysis. However the conventional response surface method is still time consuming when the number of random variables is large. In this paper, a Fourier orthogonal neural network (FONN)-based response surface method is proposed. In this method, the relationship between the random variables and structural responses is established using FONN models. Then the FONN model is connected to the first order and second moment method (FORM) to predict the failure probability. Numerical example result shows that the proposed approach is efficient and accurate, and is applicable to structural reliability analysis.


Sign in / Sign up

Export Citation Format

Share Document