gradient direction
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 25)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
pp. 100
Author(s):  
Miguel A. Arranz ◽  
Elena H. Sánchez ◽  
Víctor Ruiz-Díez ◽  
José L. Sánchez-Rojas ◽  
José M. Colino

The purpose of this paper is to present an experimental method to induce strong magnetic linear birefringence in two-dimensional assemblies of Co nanoclusters grown on glass plates. Additionally, we have also correlated the magnitude and characteristics of that nonlinear magneto-optical effect with the thickness and profile of those disordered nanostructures. For those aims, we have grown Co nanocluster assemblies on amorphous substrates, by means of pulsed laser ablation in off-axis geometry. This approach enabled us to obtain magnetic media with an intended and pronounced thickness profile, i.e., wedge-shaped assembly, to investigate the orientation and behavior of surface magnetization regarding both the thickness gradient direction and in-plane magnetic field. That study was accomplished by measuring the magneto-optical effects in reflection and transmission configurations, unveiling an out-of-plane magnetization whose magnitude depends closely on the thickness gradient direction. That component, arising from a graded magnetic anisotropy along the wedged nanostructure, adds a reversal mechanism to the surface magnetization, thus being responsible for the magnetic linear birefringence in our ultrathin Co assemblies.


Author(s):  
Joana Figueira ◽  
Joana Loureiro ◽  
Eliana M. F. Vieira ◽  
Elvira Fortunato ◽  
Rodrigo Ferrão de Piva Martins ◽  
...  

Abstract This paper presents freestanding thermoelectric touch detectors consisting of graphite conductive flakes into a polydimethylsiloxane matrix. An optimal concentration of graphite flakes (45 wt%) lead to robust and homogeneous detectors that exhibited signal-noise ratio values up to 170 with rise and falling times below 1 s and 7 s, respectively. The detectors performance was stable over continuous operation and did not reveal significant degradation while bended under different curvature radii (45, 25 and 15 mm) and consecutive bending cycles. Moreover, the twist of the thermal gradient direction between the electrodes of the detector enables a Yes or No response which opens new usage possibilities. Therefore, this work provides an efficient way to develop robust, low-cost, and scalable thermal detectors with potential use in wearable technologies.


2021 ◽  
Author(s):  
Fuzhong Bai ◽  
xiaohua zhang ◽  
jun kong ◽  
xiaojuan gao ◽  
yongxiang xu

2021 ◽  
pp. 108506
Author(s):  
Pengliang Li ◽  
Junli Liang ◽  
Miaohua Zhang ◽  
Wen Fan ◽  
Guoyang Yu

Author(s):  
Manuel G. Forero ◽  
Miguel Á. González ◽  
Santiago Cortes-Cabrera ◽  
Vanesa V. Gómez

Geophysics ◽  
2021 ◽  
pp. 1-43
Author(s):  
Jiangtao Hu ◽  
Jianliang Qian ◽  
Junxing Cao ◽  
Xingjian Wang ◽  
Huazhong Wang ◽  
...  

First-arrival traveltime tomography is an essential method for obtaining near-surface velocity models. The adjoint-state first-arrival traveltime tomography is appealing due to its straightforward implementation, low computational cost, and low memory consumption. Because solving the point-source isotropic eikonal equation by either ray tracers or eikonal solvers intrinsically corresponds to emanating discrete rays from the source point, the resulting traveltime gradient is singular at the source point, and we denote such a singular pattern the imprint of ray illumination. Because the adjoint-state equation propagates traveltime residuals back to the source point according to the negative traveltime gradient, the resulting adjoint state will inherit such an imprint of ray illumination, leading to singular gradient descent directions when updating the velocity model in the adjoint-state traveltime tomography. To mitigate this imprint, we propose to solve the adjoint-state equation twice but with different boundary conditions: one being taken to be regular data residuals, and the other taken to be ones uniformly, so that we are able to use the latter adjoint state to normalize the regular one and we further use the normalized quantity to serve as the gradient direction to update the velocity model; we call this process the ray-illumination compensation. To overcome the issue of limited aperture, we propose a spatially varying regularization method to stabilize the new gradient direction. A synthetic example demonstrates that the proposed method is able to mitigate the imprint of ray illumination, remove the footprint effect near source points, and provide uniform velocity updates along ray paths. A complex example extracted from the Marmousi2 model and a migration example illustrate that the new method accurately recovers the velocity model, and an offset-dependent inversion strategy can further improve the quality of recovered velocity models.


Sign in / Sign up

Export Citation Format

Share Document